基于压控导电的电磁防护罩的设计方案(一)
PIN 二极管瞬态仿真结果如图4 所示。P1 提供幅度Vin 为10 V、频率为1 GHz微波信号,得到负载R2 两端Vout 降为2 V,相当于PIN二极管开路时的40%.

从图4可以看出,处于微波段的PIN二极管具有压控导电特性,容易满足需求,适合作为防护罩的压控导电单元。
2 仿真分析
针对图2给出的防护结构,分析了该防护罩的电磁性能。仿真中同时考虑网格尺寸和PIN 阻抗特性的影响,设置4种防护罩结构设计方案,见表1.其中网格边长均小于入射电磁波长的1 10.因PIN二极管加工工艺不同,致使其存在性能差异。BAP63零偏电容CT 小,截止特性较好;HSMP4820 直流电阻R1 小,导通性能较好。因此,本文选取这两种型号二极管作为仿真对象,同时用隔离度I 表征防护罩屏蔽效能,插入损耗IL表征透射效率,研究其防护效能。

仿真结果如图5所示,在强电磁脉冲作用下隔离度I 与网格尺寸、入射波频率成反比,符合金属网格屏蔽规律。PIN 二极管直流电阻小于1.8 Ω时,同尺寸防护罩I-f 曲线几乎重合。当PIN 二极管导通时,防护罩近似短路,形成低阻抗表面,绝大部分入射波被反射,避免被防护设备毁伤。

弱电磁信号作用下,防护罩的透射效率仿真结果如图6 所示。对比图5,图6,防护罩在不同频点出现谐振。网格尺寸一致时,谐振频率点f 随着零偏电容CT的减小而增大。二极管零偏电容CT 一致时,谐振频率点f 随着网格尺寸的减小而增大。故谐振频率点f 与网格尺寸、零偏电容值成反比变化。

综上所述,提高隔离度I,需要使用直流电阻小的PIN二极管,并加密网格;降低插入损耗IL,回避谐振影响,需要使用零偏电容小的PIN二极管和稀疏网格。但实际上,PIN 二极管的直流电阻越小,I层厚度就越薄,零偏电容越大。故防护罩设计时,提高隔离度和降低插入损耗存在矛盾,需针对防护需求,合理选择网络尺寸和PIN二极管。
评论