新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 主动式超高频射频识别系统设计

主动式超高频射频识别系统设计

作者: 时间:2013-06-29 来源:网络 收藏

  1.2.1 物理层协议

  系统的通信协议的物理层与ISO/IEC 18000-7[3]标准兼容,载波频率为433.92MHz;调制方式为2FSK;调制深度为+/-60KHz;数据速率为38.4Kbps;唤醒频率为315MHz。

  1.2.2 数据帧格式

  读写器与应答器之间的通信数据以帧的方式打包,从而提高系统通信的可靠性。读写器与应答器之间通信帧包括前导码、同步头、数据长度、传输数据和CRC 校验几部分组成。其中前导码和同步头由CC1100 自动产生,用来进行接收和发射数据同步;数据长度为数据部分总的字节数;数据部分为要传输的有用信息,它可能包括读写器向应答器发送的命令或它们之间相互交换的数据,CRC 校验为符合CRC-CCITT 的2 字节校验位,同样由CC1100 硬件电路自动产生,并紧跟数据部分。

  2 系统的工作流程与软件设计

  系统软件分为三部分:主机软件、读写器控制程序和应答器程序,主机软件向上层提供API 接口,并通过RS232 接口与下层读写器进行数据交换;读写器程序和应答器程序分别用来控制读写器和应答器的工作流程。这里主要介绍读写器部分程序流程和应答器部分程序流程。读写器与应答器为主从关系:通信过程由读写器发起,读写器向应答器发送命令,然后等待应答器的应答。

  2.1读写器软件流程

  读写器部分软件的工作流程如图 3(a)所示,读写器一直等待主机命令,接收到主机命令后,根据主机需求将命令解析成读写器对应答器相应操作,例如:提取场内所有应答器ID,对场内某些应答器的存储器进行读写等。命令发送后,读写器等待应答器的应答数据,与应答器进行无线通信。当读写器执行完主机命令,完成于应答器的通信后,将需要返回的数据或状态通过读写器与主机之间的接口上传主机,继续等待新的主机命令。

  2.2应答器软件流程

  图 3(b)说明了应答器的状态转移图,应答器平时处于休眠状态,当进入读写器的载波唤醒场内时,被载波唤醒,进入激活状态,如果1s 之内没有接收到命令则重新返回休眠状态。应答器接收到读写器命令后,对命令进行初步解析和操作对象判断,如果应答器确定读写器此次操作对象包含自己,则随机选择一个时隙做出相应的应答。


  图3 读写器与应答器的工作流程

  读写器向应答器发送的消息分为两种形式:广播消息和点对点消息。广播命令用来收集所有场内应答器的ID,或向所有场内应答器进行同一个操作。而点对点消息是针对某一个应答器进行读存储器、写存储器等操作。读写器发送广播命令后,如何分配各个应答器对信道的占用是一个十分重要的问题,第3 部分将对这个问题进行讨论。

  3 系统防碰撞算法设计与实现

  当两个或两个应答器同时对读写器的命令做出响应时会彼此产生干扰,使读写器无法正确接收,这种现象为“碰撞”。为了提高系统的可靠性和效率,必须尽量避免应答器碰撞的发生。系统采用基于时隙的ALOHA 算法作为系统的防碰撞算法。

  时隙 ALOHA 算法的基本步骤为:每次应答器响应循环的时间被分为N 个时隙,应答器随机选择时隙应答,当不同的应答器选择同一个时隙进行应答时,则发生了碰撞,碰撞的应答器与读写器通信失败,应答器在下一个通信循环中重新与读写器建立通信。

  3.1时隙ALOHA算法分析

  1)最佳时隙数

  一个时隙内应答的应答器数目服从二项分布,对于给定的时隙数N 和场内应答器数n,对于选定的某一时隙,读写器能正确接收应答器应答的概率为


  2)场内应答器数估计

  在实际应用中,场内应答器数目是未知的,因此必须对场内应答器数进行估计。图中可以看出每个时隙可能有三种状态:空时隙、正常通信时隙和碰撞时隙。可以根据式(5)对应答器数进行估计[4]。



评论


相关推荐

技术专区

关闭