无线通信RF直接变频发送器
显然,RF直接变频架构需要最少的有源元件。由于采用带数字正交调制器和NCO的FPGA或ASIC取代模拟正交调制器和LO,RF直接变频架构避免了I、Q通道的不平衡误差及LO泄漏。此外,由于DAC的采样率非常高,更容易合成宽带信号,同时可保证满足滤波要求。
高性能DAC是RF直接变频架构取代传统无线发送器的关键元件,该DAC需要产生高达2GHz甚至更高的射频载波,动态性能要达到其它架构提供的基带或中频性能。MAX5879就是一款这样的高性能DAC。
利用MAX5879 DAC实现RF直接变频发送器
MAX5879是一款14位、2.3Gsps RF DAC,输出带宽大于2GHz,具有超低噪声和低杂散性能,设计用于RF直接变频发送器。其频率响应(图2)可通过更改其冲激响应进行设置,不归零(NRZ)模式用于第一奈奎斯特频带输出。RF模式集中第二、第三奈奎斯特频带的输出功率。归零(RZ)模式在多个奈奎斯特频带提供平坦响应,但输出功率较低。
MAX5879的独特之处在于RFZ模式。RFZ模式为“零填充”射频模式,所以,DAC输入采样率为其它模式的一半。该模式对于采用较低带宽合成信号非常有用,并可输出高阶奈奎斯特频带的高频信号。所以MAX5879 DAC可用于合成超出其采样率的调制载波,仅受限于2+GHz模拟输出带宽。
图2. MAX5879 DAC的可选频响特性。
MAX5879性能测试表明:940MHz下,4载波GSM信号的交调失真大于74dB (图3);2.1GHz下,4载波WCDMA信号的邻道泄漏功率比(ACLR)为67dB (图4);2.6GHz下,2载波LTE的ACLR为65dB (图5)。这种性能的DAC能够支持多奈奎斯特频带中各种数字调制信号的直接数字合成,可作为多标准、多频带无线基站发送器的公共硬件平台。
图3. MAX5879 4载波GSM性能测试,940MHz和2.3Gsps (第一奈奎斯特频带)。
图4. MAX5879 4载波WCDMA性能测试,2140MHz和2.3Gsps (第二奈奎斯特频带)。
图5. MAX5879 2载波LTE性能测试,2650MHz和2.3Gsps (第三奈奎斯特频带)。
RF直接变频发送器应用
MAX5879 DAC也可以同时发送奈奎斯特频带的多个载波。该功能目前用于有线电视下行发射链路,发送50MHz至1000MHz频带的多个QAM调制信号。对于该应用,RF直接变频发射器可以支持的载波密度是其它发射架构的20-30倍。此外,由于单个宽带RF直接变频发送器取代了多个无线发送器,从而大大减小了有线电视前端的功耗和面积。

模拟信号相关文章:什么是模拟信号
数字通信相关文章:数字通信原理
通信相关文章:通信原理
混频器相关文章:混频器原理
评论