新闻中心

EEPW首页 > 智能计算 > 业界动态 > 中国人工智能未来发展的五大战略

中国人工智能未来发展的五大战略

作者: 时间:2017-06-15 来源:行业报告研究院 收藏

  总体而言,中国目前从事可自动化工作的劳动力人口超过其他国家。麦肯锡全球研究院预测中国51%的工作内容有自动化潜力,这将对相当于3.94亿全职人力工时的冲击。

本文引用地址:https://www.eepw.com.cn/article/201706/360519.htm

  由重复性工作内容和可预测的程序性任务构成的职位尤其容易被取代。根据成本效益分析,中等技能工人将首当其冲,而低收入岗位则可能存在更长时间。但这并不意味着如今的高端工种能够完全免受冲击。

  比如,医生之类专业人士的部分工作也可能被自动化,而医生的工作内容将会更专注于与人的沟通和互动。许多职业并不会消失,但其工作内容将会发生改变,因此教育和培训体系也应与时俱进。一份美国政府报告预测了可能在未来盛行的四大类相关工作:

  使用系统完成复杂任务的协作性工作(如护士使用人工智能应用常规查房);开发人工智能科技和应用的研发性工作(如数据科学家和软件研发人员);

  监测、授权或修理人工智能系统的监测性工作(如人工智能机器人的修理师);适应人工智能时代的工作(如建立人工智能相关法律框架的律师或设计适合自动汽车行驶环境的城市规划师)。

  对先进数字技能的需求增加和低端劳动力的剩余将可能导致不平等的加剧,部分人群在这一问题面前尤为弱势。比如,目前女性在中国计算机技术专业毕业生中的占比不到20%;从事可自动化的、重复性职业的女性过多,而在科技和管理岗位中又不足。

  在最新的万事达卡女性进步指数中,中国女性在就业方面得分83.8,但在领导方面仅获27.8分,说明了高技能职位的两性平权远未实现。而人工智能因此可能会进一步加剧性别不平等。

  与之相似,人工智能的逐步应用也可能进一步拉大富裕沿海地区与欠发达内陆地区的差距,加剧城乡发展的不平衡。只有认真研究充分评估各种可能性,才能规划好人工智能占据重要一席的未来。

  对社会的影响

  人工智能发展前景广阔,可用于改善医疗、环境、安全和教育,提升民生福祉。与此同时,由于它模糊了物理现实、数字和个人的界限,衍生出了复杂的伦理、法律及安全问题。随着人工智能的逐渐普及,需要审慎管理来应对这一转变。

  许多现有用例展现出了人工智能解决社会问题的潜力。人工智能系统能够帮助科学家预测环境变化。康奈尔大学利用这一技术预测动物栖息地变化以保护某些鸟类。人工智能在医疗领域也得到广泛应用。

  荷兰政府使用人工智能技术为特定病患群体寻找最有效的治疗方案,并通过分析数字化的医疗档案来减少医疗失误。在美国,拉斯维加斯卫生部利用人工智能技术进行公共卫生监测,通过社交媒体的追踪来确定疾病爆发的源头。

  人工智能系统还能提升公共交通系统的安全性和效率。已有证据表明使用人工智能技术的自动驾驶汽车可以减少交通事故。而阿里巴巴与杭州政府合力推进智能城市交通体系,以人工智能控制交通信号灯,可以有效减少城市特定区域的拥堵并使通行速度提高11%。

  另外,人工智能还被用于预测能源需求,管理能源使用。谷歌大数据中心的能耗降低,英国政府对电网系统中需求高峰的管理都是该技术方向的早期用例。对企业和消费者而言,这意味着高达数十亿美元的能源节约机会。

  然而,除了这些潜力外,管理具备自主学习和决策能力的机器也是一份重艰巨的责任。许多值得深思的伦理和法律问题因此而生。阿西莫夫的机器人三大定律首次尝试为人机互动设立基本原则。但人工智能技术所带来的伦理问题更为微妙,其潜在影响也更为深远。

  首先,当传感器和人工智能无处不在时,企业得以不断收集个人信息,不仅在人们使用数字设备时,也在人们往返于公共和私人空间时。在某些特定场合,比如医院,采集这些个人信息极为敏感。这就引发了一系列问题:谁拥有个人数据?数据应以何种方式共享?面对日趋严峻的网络安全攻击又该如何保护数据?

  其次,人工智能可能在决策过程中产生无意识的歧视。由于现实世界存在着各种形式的种族歧视、性别歧视和偏见,输入算法中的数据也可能附带这些特征。而当机器学习算法学习了这些带有偏见的训练数据,也就“继承”了偏见。

  2016年,一家顶尖的人工智能企业就发生了此类事故:该公司通过网络论坛训练了一个实验性聊天机器人,不曾想机器人学会了各种种族歧视和性别歧视的语言,惹恼了许多网络用户。可以想见,如果有偏见的人工智能处在了决策地位,那么其决策可能会导致特定人群受到不公正的待遇。

  除伦理问题之外,人工智能在社会的普及更会产生诸多法律层面的影响。如果人工智能的决策导致意外甚至犯罪,谁应当对其负责?人工智能创作的知识产权归谁所有?一旦人工智能拥有超级能力,又该用哪些措施进行监管?人工智能研发人员有哪些法律权利与义务?要建立一个完善的法律及伦理框架,仍有许多问题尚待充分探讨。

  对地缘政治的影响

  人工智能的发展大多在开源环境下进行,充分体现了国际合作的重要性。进一步的推进人工智能的发展也需要各国合力提供更为广泛的数据、算法、资金和人才交流。然而,虽然全球经济不断数字化,全球监管方面的许多领域仍是一片空白。赶超人类智力的自动系统带来了诸多伦理及安全问题,也需要国内及国际间的共同协作来解决。

  此外,正如基于人工智能技术的自动化将造成劳动力市场分化,技术不发达的发展中国家在这一波发展浪潮中也将落于下风,国家间的“数字鸿沟”进一步扩大。一些国家原本期待快速增长的人口能够推动劳动力密集型经济的发展,但如果大量人力工作被机器取代,甚至可能出现新的社会动荡。

  最后,计算机模拟工具已经被广泛运用在战争推演,而人工智能将进一步提升这类模拟的精度和能力。人工智能武器化隐藏着巨大的风险。由美国海军委托撰写的一份报告声称,随着军用机器人的复杂化,人们应更多关注其自主决策能力带来的影响。

  史蒂芬·霍金、伊隆·马斯克及超过1000名人工智能和机器人研究员共同签署请愿信,要求禁止在战争中使用人工智能,并警告“自动化武器”可能带来可怕灾难。人工智能系统正如此前的核能及核武一样,必须通过强有力的国际公约来确保其和平使用,以保障世界各国的安全。

  三、中国人工智能的未来之路

  中国要将目前的创新转化为长期可持续的增长引擎,就必须制定一套精心策划的战略。政府可以为人工智能的发展打牢根基,并且设定激励人心的目标,以此刺激私营部门的创新和应用。人工智能的发展基石包括完善的产业、经济、社会以及外交政策框架。

  相关产业及经济政策框架

  虽说人工智能尚处于发展早期,但其发展很可能是非线性的。这就意味着完善的产业政策必须尽快到位,否则可能出现激励不当、投资过度和供应过剩的风险,破坏人工智能所产生的价值。市场将主导人工智能技术的开发和应用,合适的政策框架可为其构建一个健康的发展环境。

  战略重点之一:建立完善的数据生态系统

  海量数据是训练人工智能系统、吸引人才、加速创新的核心要素之一。中国可以通过建立并落实数据规范、向私营领域开放公共数据、鼓励跨国数据交流来构建一个更为完善的数据生态系统。

  首先,建立数据标准是进行广泛数据分享和实现系统间交互操作的重要前提条件,有助于提升物联网及人工智能技术的价值。潜在的庞大数据体量是中国的天然优势,使中国有机会在国际上更好地发挥领头羊的作用。而且,在与中文语言相关的数据规范制定方面,中国也应起到主导作用。

  对于特定行业数据,政府可要求现有的监管机构制定必要规则。比如美国证券交易委员会在2009年出台规定,要求所有上市公司使用XBRL(可扩展商业报告语言)格式发布财报,确保所有公开数据的机器可读性。

  其次,为了提升数据的多样性,政府应提高公共数据的开放程度,并带头建设行业数据库。这些举措同时能够提升公共服务质量、提供政策制定洞见,从而带来额外益处。比如纽约市政府就建立了公开数据门户网站,为市民提供经济发展、医疗、休闲、公共服务等领域的数据。

  2012年纽约市还颁布了《开放数据法案》,要求政府部门使用机器可读取的数据并建立API(应用程序编程接口),方便软件研发人员直接连接政府系统并获取数据。

  最后,中国政府还需考虑国际数据流的价值。麦肯锡全球研究院的调查表明,2014年,跨境数据流为全球经济创造了2.8万亿美元的价值,对经济增长的贡献已经超过实体贸易。此外,研究还指出,由于经济体需要接触全球的思想、研究、科技、人才和最佳实践案例,数据流入和流出都能十分重要。

  数据是未来的货币。例如在医学研究中,如果没有全球海量临床数据的支持,人工智能的潜力就无法得到充分挖掘。过多的桎梏将会束缚中国的人工智能企业,导致其丧失开发具有全球竞争力产品的能力。

  战略重点之二:拓宽人工智能在传统行业的应用

  只有当人工智能技术在中国真正普遍的应用于传统行业,而不仅仅属于科技巨头时,其经济潜力才会充分彰显。提升各行各业的生产力水平将创造巨大的价值,但中国首先需要克服重重障碍。

  第一重障碍是很多商业领袖还没有意识到改变现有业务运作方式的紧迫性。麦肯锡调查显示,目前在中国的传统行业中,超过40%的公司仍未将人工智能列入战略优先项。因此,许多公司仍未开始采集未来人工智能系统所需要的数据。

  例如,农业公司鲜少记录如种植时间表或是气候对产出的影响,而这些信息正是人工智能生成洞见及提升效益所需要的。与此形成对比的是,英国、美国和日本都已建立了全国信息系统采集此类数据,将先进的分析技术引入现代农业管理。

  第二重障碍是专业技术知识的缺失。如上文所述,中国需要培养更多的优秀数据科学家,特别是在一些需求紧迫的领域。而能将人工智能知识转化为商业应用创造价值的人才也同样紧缺。为了理解和应用数据,越来越多的企业决策者和中层管理者需要学习新技能。

  与英特尔类似,一家中国芯片制造商已经意识到,分析在制造和测试过程中的大量数据将有助于改进生产流程并降低残次率。但由于缺乏既懂半导体技术,又懂人工智能的人才,这一想法仍然没能被付诸实施。

  第三重障碍是实施成本较高。对中国企业而言,购买人工智能系统、高价聘用专业人才有时并不合算。当人工成本较低时,引入先进技术、精简人工流程的需求也并不那么迫切。

  人工智能最大的价值在于引导传统产业的彻底变革。如果政府能够帮助克服人工智能发展初期面临的这些障碍,市场将有机会充分驱动人工智能未来的发展。

  减税和补助等传统经济工具可以解决一些问题。同时,政府还应率先垂范应用人工智能系统。这将产生强有力的跟随效应,激活市场,助力服务供应商的发展,积累技术经验和人才,最终达到降低应用成本的目的。

  此外,鼓励物联网(简称“IoT”)在传统行业的应用将有助于人工智能产生更多的价值。物联网通过传感器和网络实现各类设备间的联通,为人工智能提供了海量的真实世界数据。结合“互联网+”政策,政府可协助打造物联网在关键经济领域应用的成功案例,为其他行业树立典范。

  教育政策框架

  人才对人工智能的发展和应用至关重要。一个健康的人才结构应包括尖端的研究人员来推动人工智能基础技术的发展,开发人员以促进人工智能在现实环境中的应用,以及大量能够与人工智能系统在不同场景共事的劳动力。

  战略重点之三:加强人工智能专业人才储备

  中国面临着巨大的人工智能人才缺口。政府需要大力投资人工智能相关教育和研究项目;重新设计教育体系,突出创新和数字技术的重要性;制定吸引全球顶尖人才的移民政策。

  推进人工智能技术的发展,需要建立更大规模的计算机科学精英人才库。政府可出资设立人工智能项目,资助顶尖大学创建人工智能研究实验室和创新中心,以推进大学、科研机构和私营企业间的合作。

  在这方面,韩国政府已经迈出坚实的一步,投资1万亿韩元(约合8.63亿美元)与韩国商业巨头合资建立国家级的公私合营人工智能研究中心。加拿大政府也有类似举措:政府向蒙特利尔三所大学的人工智能研究项目投资超过2亿美元。

  许多受访专家表示,中国必须花大力气培养更为广泛的创新文化,方可实现人工智能领域的突破。途径之一就是引入将人工智能和其他学科相结合的大学课程。

  斯坦福和麻省理工等顶尖美国高等院校已经开设了计算机科学与人文学科的联合专业,旨在寻求激发创造力的新方法。此类课程能够激发人工智能在医疗、法律、金融和媒体等各领域的应用。

  投资大学项目可带来长期收益,因为人才是未来吸引国际公司的核心所在,而非传统的税收或其他财务优惠。人工智能的大型研发团队对吸引学术人才愈发重视。谷歌DeepMind团队中有大约三分之二的成员来自如伦敦大学学院、牛津大学和蒙特利尔大学等学术机构。

  这一领域顶尖公司自然而然会向拥有大量人工智能人才的城市汇聚。例如,随着蒙特利尔在该领域的声名鹊起,谷歌和微软都宣布了将向当地大学人工智能研究所投资并拓宽公司在当地的业务。

  除了培养国内人才,中国也需要与全球顶尖数据科学家合作,参与到国际协作之中,包括大力引进国际专家来华工作、鼓励中国人工智能研究者出国学习全球最新的创新科技。这些要求政府放松居住和移民政策,并出台奖励和支持措施。

  战略重点之四:确保教育和培训体系与时俱进,支持劳动力大军的再培训

  人工智能在经济和社会中的普遍应用还需要数十年,但中国现在就应为一些行业的快速颠覆做好准备。某种关键技术的突破短短几年就可以让一些职业消失。打字员、接线生、胶片洗印师及许多其他职业都随着科技进步基本退出了历史舞台。

  未来的一项长久挑战是帮助受到人工智能冲击的行业劳动力重新适应并获得新技能,这将是保障公共福利和维护社会稳定的关键。政府要及时识别哪些是最可能被自动化取代的工作,并为受到影响的劳动力提供再培训,比如与职业培训学校紧密合作,向工人提供免费教育的机会。

  与此同时,政府也应着力加强数据和人工智能在各个阶层的教育。未来的政府领导必须理解人工智能才能制定明智的政策,未来的管理人员必须了解人工智能才能管理企业;未来的工人必须学会与人工智能共事才能避免被淘汰。

  中国应长期关注相关领域的教育,保证未来劳动力具备所需技能。这不仅包括建立未来数据科学家和工程师储备库,还要让多数劳动力懂得如何在各行各业使用科技。学校需要更重视科学、技术、工程和数学教育,即使是基础教育和职业培训也需要增加数据教育的内容。

  人工智能和很多重复性工作的自动化很可能扩大数字鸿沟,因此政府对不平等问题的应对就显得尤为重要。相关举措包括确保教育机会的平等性,保证女学生、农村和内陆地区学生在科学、技术、工程、数学和人工智能等各个方面能够获得充分教育。

  社会及全球政策框架

  战略重点之五:在国内及国际上建立伦理和法律共识

  人工智能的进步将在多个方面为社会带来深远的影响。在最为紧迫的伦理和法律问题上,中国不仅要在本国,更要在国际上促成共识。

  在国内,应形成一套透明和广泛的质询程序来确保公众做好迎接变革的准备。一些法律问题,比如隐私保护和自动驾驶汽车的责任认定等,将对人工智能的发展及应用有着举足轻重的影响。全国人大需要建立起法律框架,扫清法律上的不确定性。

  待法律框架建立之后,政府就要成立监管机构负责人工智能的监督和管理。考虑到人工智能在各行各业的广泛应用,这就要求政府与各相关机构协商咨询、发挥其专长。比如,医疗领域的应用不当将造成严重后果。因此,国家卫生和计划生育委员会必须在规则制定过程中拥有强有力的话语权。

  在国际方面,中国可以牵头组建国际性的监管机构以促进人工智能技术的和平、全面和可持续发展。该国际机构的目标应是监管人工智能的发展、制定标准和确定伦理准则。

  除了监管,中国还可以在全球经济发展中起到模范作用。为保证全球数字鸿沟不会成为经济繁荣的长期阻碍,中国可与其他发展中国家分享和交流人工智能技术及管理经验,从而揭开“人工智能一带一路”新篇章。

  在未来数十年间,人工智能有可能从根本上改变人类社会。中国应充分利用这一极其重大的技术进步提高生产力以保持较快增长。更为重要的是,中国有能力,也有机会领导人工智能在全球范围的发展和治理,确保人工智能为全人类福祉做出应有的贡献。


上一页 1 2 下一页

关键词: 人工智能

评论


相关推荐

技术专区

关闭