高阻器件低频噪声测试技术与应用研究--高阻器件噪声测试技术的验证和应用
4.3.4高阻值厚膜电阻中的爆裂噪声
在本实验中,我们发现了大多数高阻厚膜电阻含有明显的爆裂噪声,其典型时域波形和频域功率谱密度如图4.6和图4.7所示:
厚膜电阻的结构比一般电阻更加复杂,其电阻体的材料分布不是均匀的,而是由许多导电颗粒分布在绝缘材料之中构成的,如图4.8所示:
上图中的灰色球体是导电颗粒,通常是钌系氧化物RU2O2上图中黑色部分是绝缘介质,俗称玻璃釉,通常是由氧化铅和二氧化硅构成。由图4.8可见,电阻中的导电颗粒被绝缘介质分离出来,彼此之间一般不会接触。在制作电阻时,导电颗粒添加的越少,则电阻的阻值越大,这也是常用的一种调节电阻阻值的方式。
已有针对厚膜电阻的研究同样在实验中的一部分厚膜电阻中发现了爆裂噪声厚膜电阻中爆裂噪声的产生和电阻材料的构成有直接的关系。载流子在厚膜电阻中的输运是通过导电颗粒与绝缘层构成的特殊网络来实现的,同时载流子输运机制是由厚膜电阻中导电颗粒之间的绝缘层来决定的,而非电阻体中的金属氧化物颗粒,因为载流子在这些绝缘层形成的势垒两边进行隧穿导电,势垒决定时域爆裂噪声中我们可以看到高阻厚膜电阻中的爆裂噪声是一种二的高度了载流子的输运。有研究者认为厚膜电阻中的爆裂噪声是由钌系厚膜电阻中诸如气泡,空洞之类的表面缺陷导致的,并且阻值一定的情况下,尺寸更小的厚膜电阻具有更大的爆裂噪声,且厚膜电阻中的爆裂噪声主要出现在材料中最高场强的区域。
然而,目前对于厚膜电阻中爆裂噪声的起源尚无定论。有研究者认为爆裂噪声是由导电颗粒之间非常薄的绝缘玻璃釉中的缺陷导致的[29],这些缺陷会不断俘获或释放载流子,形成载流子的产生-复合中心,当这些产生-复合中心处于高场强时,则它们会使势垒发生变化从而引起隧道电流的涨落,导致爆裂噪声。
从图4.7中的态噪声,即噪声脉冲的幅度基本一致。这种爆裂噪声多见于其他半导体器件,而非厚膜电阻之中[30]。大多数其他种类电阻的爆裂噪声的脉冲高度是不一样的,可能会同时存在两三种高度的脉冲。脉冲的高度是由电阻材料中高场强部位中的微观缺陷态所导致的。每个足以激发出爆裂噪声的微观缺陷,对应着一个脉冲。如果样品材料中含有多个足以在高场强下激发出爆裂噪声的缺陷,则该器件的爆裂噪声时域波形中会含有多种高度的脉冲,其频域中会含有明显的洛伦兹谱,因而不会再表现为典型的爆裂噪声曲线。
我们对不同电压下的爆裂噪声时域信号进行了测试,如下图所示:
从以上图中我们可以看到,爆裂噪声在低电压下并不明显,但随着所加直流偏置电压的增加而变得强烈。该现象可用电场强度对厚膜电阻中的爆裂噪声的影响来解释。厚膜电阻中的爆裂噪声主要是由绝缘介质中的缺陷在高场强下引起的。因此影响爆裂噪声的因素有两个,即电阻体中的缺陷数量和这些缺陷所处的电场强度。当器件偏压较低时,器件中的电场较低,因此即便有个别缺陷处于高场强,其相对电场强度还是比较小,因而爆裂噪声不明显。随着电压的不断增大,电阻体材料的电场强度不断增加,从而导致个别相对场强较高的缺陷区域的电场的绝对强度大幅增加,从而加强了产生-复合中心对于载流子的俘获和释放,导致爆裂噪声更加明显。
在实际工程应用中,为了降低厚膜电阻的噪声,除了对电阻进行筛选之外,另外一个有效的方法是尽量使厚膜电阻两端偏压置于低电压水平,以免激发出强烈的爆裂噪声。同时在应用条件允许的情况下,尽量选择同阻值中尺寸较大的厚膜电阻也可以有效降低样品的噪声水平。
评论