小型数字湿度传感器IC,延长电池寿命并降低设计复杂度
小型数字湿度传感器单芯片为满足众多应用需求而提供更合适的解决方案,这些应用包括便携式气象站、雾化器、用于货物和资产运输的数据记录仪、智能电话/功能型电话配件以及远程环境感应节点等。
为了更好的理解使用数字湿度传感器带来的益处,我们将讨论以下主题:
?传统相对湿度(RH)分立传感器与数字相对湿度单芯片传感器对比。
?Silicon Labs Si7005数字相对湿度传感器在RH和温度测量时平均功耗的计算。
?为便携式湿度传感器系统选择最佳电池。
背景
湿度测量是对空气或其他气体中水分含量的测量。有几种方法用来表示湿度量度:
?绝对湿度(用gm-3表示)。
?绝对水汽压(衡量空气中实际水分含量的测量,用kPa表示)。
?饱和水汽压(在给定温度下,空气中含有的水蒸气所产生的最大压力)。
如果水分含量超过饱和水汽压,会产生冷凝,并且水分含量被降低到饱和水汽压。露点(当气体冷却时,冷凝液或雾气开始形成时的温度)也用来衡量空气中绝对水分含量。可以通过很多技术来测量相对湿度,从弹簧支撑结构的简单机械指示杆到复杂且昂贵的分析仪器,例如冷镜面光学湿度计。一般来说,无论是相对湿度、露点、绝对湿度或等效的湿球温度,测量湿度都不是一件容易的事情。
来自英国国家物理实验室(National Physical Laboratory)的研究表明,实际测量湿度是十分困难的,因为不确定的环境因素,最小的测量误差为±3%。由于RH极依赖于温度,因此我们要知道空气的精确温度,以便确定相对湿度。仅0.2℃的温度变化就会导致1%的RH误差。
分立式电阻和电容相对湿度传感器已使用数年,其填补了机械和光学RH感应之间的测量空白。他们与分立式温度传感器组合使用,例如热敏电阻和电阻温度检测器(RTD),共同测量RH和露点。电阻式传感器使用高分子聚合物薄膜,其依据吸收水分量而改变导电特性。电容式相对湿度传感器利用电容器基板之间的高分子聚合物电介质,并通过检测由渗透到高分子聚合物电介质层的水气所引起的电介质常数(Er)和电容的变化来测量RH。当RH从0变化到100%时,电介质常数Er通常从3.0变化到4.0。图1显示了典型的分立器件传感器原理图。

图1.典型的分立器件组成的相对湿度和温度传感器
分立式方案比机械式系统方案体积更小、更容易校准,但是他们需要很多辅助器件来实现线性化、校准和转换RH值。这种方法需要额外的电路板空间、更高的功率,并且在给客户发货之前每个器件单元都需要经过生产线校准,耗费人力;而且,分立式传感器不适合大批量的回流焊接;此外,分立式传感器在温度范围和使用周期中还存在精度差、变化率高、显著的滞后作用和严重的感应漂移等问题。以上因素都增加了生产测试和校准的复杂度,而且意味着在最终应用的产品生命周期中需要周期性的校准。
数字相对湿度单芯片传感器
新兴的传感解决方案把相对湿度和温度传感器直接集成到单芯片CMOSIC中,并具有数字I2C接口。因为两个传感器在同一晶圆上位置靠近,所以在相同温度下RH读数总是比分立式方案的读数更精确。单芯片传感器解决方案的一个典型例子是Silicon Labs Si7005数字相对湿度和温度传感器。Si7005传感器通过晶圆表面上的高分子聚合物薄膜测量湿度,通过片上二极管的带隙电路测量温度。唯一所需的片外器件是一对旁路电容。每一个Si7005相对湿度传感器都经过工厂校准,因此无需客户校准。该传感器采用工业标准的4mm x 4mm QFN封装,并具有小型开口用于裸露水气感应高分子聚合物薄膜。另外还可以选购具有薄型保护盖的版本。保护传感器在安装周期以及整个终端产品寿命周期中,避免由助焊剂、粉尘、化学物质及其他污染物所带来的侵害,同时也增加了回流焊接过程中的保护。表1汇总单芯片解决方案(例如Si7005湿度传感器)与分立式解决方案的特性对比,展示出单芯片解决方案的优势。
表1.单芯片传感器相对于传统分立式设计的好处

通过以下方式获得电容到RH的转换和对RF精度的微调:
?所有器件均在两个RH测试点进行电容校准。
?计算RH时实施片上增益和补偿校准。
做进一步的非线性化和温度补偿可以达到±3%的RH精度。非线性化和温度系数由Silicon Labs提供。
与传统的分立式、混合式和MCM解决方案相比,Si7005硬件、软件和固件的优化提供了以下好处:
高集成度
测量出的湿度和温度值由片上信号调节电路和模数转换器(ADC)转换成数字格式。为了输出电压或频率,无需片外信号调节或数字转换器。物料清单(BOM)仅包括两个旁路电容器,而传统分立式传感器可能需要几十个器件,以实现相同功能。与分立式传感器、模块或混合式/MCM相比,Si7005湿度传感器具有更小的封装面积和更轻的重量,所以可获得更低的整体解决方案成本、更少的设计负担、更小的体积和重量、更高的可靠性和更快的上市时间。
评论