MDO4000混合域示波器结构解密(上)
频谱分析基础
如图1所示,可以在时域或频域中观察信号的不同特性:
在时域中,传统上示波器被用作为观测幅度随时间变化的仪器。在频域中,传统上频谱分析仪被用作为观测幅度随频率变化的仪器。我们可以看出,在这两种情况下,信号是相同的。时域信号是大量离散的正弦波的复合体,每个正弦波都有自己的幅度和相对相位。频谱分析仪中显示的“频谱”只是简单地把信号分解成构成的频率成分。
传统扫频分析仪
图2是传统扫频分析仪简化的结构方框图:
扫频超外差频谱分析仪是几十年前第一次使得工程师能够进行频域测量的传统结构。频谱分析仪最初是使用纯模拟器件构建的,之后与所应对的应用一起不断演变。当前一代频谱分析仪包括各种数字元器件,如ADC、DSP和微处理器。但是,基本扫频方法仍大体相同,最适合观察受控的静态信号。扫频式频谱分析仪通过下变频所输入的射频信号,在分辨率带宽(RBW)滤波器的通带范围内扫描,来测量功率随频率的变化。RBW滤波器后面有一个检测器,检测器计算选定跨度中每个频率点上的幅度。尽管这种方法可以提供高动态范围,但它的缺点是每一次只能计算一个频率点的幅度数据。这种方法基于的假设是,分析仪在完成至少一次扫描的时间内,被测信号在此其间没有明显的变化。结果,测量只对相对稳定不变的输入信号有效。如果信号快速变化,那么在统计概率上说,部分变化极可能会被漏掉。
传统扫频分析仪在观察随时间变化的RF射频信号方面是一种有缺欠的工具。如果分析仪在扫描通过该频带后,某突发信号才出现在已扫描过的频带内,那么这个突发信号将不能被捕获。看一下图3:
图3. 由于扫频结构限制了分析过程中关心的频率,传统频谱分析仪可能会漏掉一些随时间变化的突变信号。Fb处关心的信号以间歇方式广播。在分析仪从Fa扫描到Fb时,如果在分析仪扫描通过Fb时信号恰好没有广播,那么信号就可能被漏掉。
让我们再观察另外一个实例。图4显示了传统频谱分析仪设置成以20 kHz RBW扫描通过20 MHz的频谱。默认扫描时长为146 ms,我们打开Max Hold曲线(蓝色曲线)和Normal曲线(黄色曲线),观察频谱响应。
图4:传统频谱分析仪以20 kHz RBW测量20 MHz频谱中的信号。
图5是使用MDO4000混合域示波器的时域和频域画面观察相同的信号。在显示Max Hold曲线和Normal曲线时,信号Normal曲线显示的信号看上去要干净得多。Normal曲线显示了随时间变化的信号非常简短的部分的FFT。在20 kHz RBW下,频谱时间不到115 us。
MDO4000的时域画面显示了标为“f”的橙色曲线代表着信号的频率随时间的变化。频率标度设置为2.00 MHz/格。频率随时间变化画面的粗略视图显示了这个信号在大约1.4 ms时间周期上似乎在三个不同的频率之间跳动。每个频率似乎稳定了大约400 us,而频率之间的跳变用了大约100 us。这些事件要比传统扫频分析仪的扫描时间快得多。根据图4中选择的设置,传统频谱分析仪每个扫描期间(146 ms的扫描时间)已经有100多个这样的事件集合发生了。
图6. 正常曲线现在位于跳频信号较高频率上。
评论