探头讲解第一篇:高压差分探头
畸变:畸变是输入信号预计响应或理想响应的任何幅度偏差。在实践中,在快速波形转换之间通常会立即发生畸变,其表现为所谓的“减幅振荡”。差分探头的两个差分输入线非常长,常见的有50cm左右,如果差分探头这个指标设计不好,那么测量的信号容易产生畸变。市场上不同厂家的差分探头测出的结果可能不同,有的相差甚远,这个指标就是其中原因之一。
当然差分探头还有输入阻抗,输入电容,精度,衰减系数等指标,市场上各个厂家差别不大,一般也不会出问题,所以这里就不一一介绍了。
5.高压差分探头测试实例分析
5.1差分探头测试半桥电路中MOS管的DS极间电压
以下是利用CYBERTEK公司DP6130测试半桥电路上下管DS波形实例:



5.2差分探头测试半桥电路中MOS管的GS极间驱动电压
以下是利用CYBERTEK公司DP6130测试上下管GS波形实例:



通过以上实例分析,高压差分探头也可以测量驱动波形。差分探头在测量驱动管波形时,特别是上管驱动波形,由于差分电压(驱动电压)很小,只有十几V,但是共模电压很大,通常达到几百V,这时CMRR(共模指标)就显得尤为重要,如果CMRR指标不够高,测量这类信号时,波形将会严重失真。下午将重点讨论差分探头的CMRR问题。
5.3差分探头CMRR的实例分析
如何简单测量差分探头的CMRR指标,通过下面的实例分析将使用户有个基本了解。还是以上面的测试平台为例,将差分探头的红黑夹子短接,同时勾住上管的G极,理论上差分探头的输出应该为零,而实际上不可能,原因就在于,被测点对地有很高的共模电压,接近480V,而差分探头的共模抑制能力有限,那么就会有输出,输出越大,证明差分探头的CMRR能力越差。



通过以上图片可以看出,由于差分探头的共模能力有限,共模信号的输出峰峰值有 2.64V,会影响实际的驱动波形测量,图上的尖峰影响高频部分,其它部分影响低频部分。现在我们来仔细分析驱动波形,请看下图上管驱动波形图片分析:

以上图片可以看出,DP6130测量驱动波形,波形失真还是比较小的,原因在于CMRR指标是比较高。CYBERTEKDP6130 差分探头驱动波形时,示波器是每格5V,而根据共模信号波形可知,共模信号输出的峰峰值只有2.64V,所以实测到的驱动波形几乎看不到波形的失真,基本达到应用要求。市场上各个厂家的CMRR能力不尽相同,大家可以用该种方法判断你探头的共模抑制比能力,同时让你能够准确判断你测试出的驱动波形是否接近实际值。
评论