工业以太网中层次拓扑结构对网络性能的影响
1)排队延迟:从信息进入排队队列到此信息获取通信网络所需的时间.排队延迟主要由通信网络的存取控制协议和相应的信息调度算法决定.工业以太网采用的是CSMA/CD协议,每个节点在发送数据前监听信道上是否有其他节点在发送数据,如果信道空闲,此节点才可发送数据.由于存在传播延迟,采用这种办法不可能绝对避免冲突,因此,CsMA/CD要求用户边发送边监听.如果监听到冲突,双方首先停止发送,然后再发送一个强干扰信号,以通知网上的其他用户,并等待一个随机时间,重新发送.当一个数据产生冲突时,其等待时间具有不确定性,甚至连续冲突超过一定次数,数据信息会遭到丢弃,很多情况下在工业现场总线中是无法容忍的。
2)发送延迟:从信息的第一个字节开始发送到最后一个字节发送结束所需的时间.发送延迟等于数据块长度L与信道带宽B之比:
3)传输延迟:信息在现场设备问传输所需的时间.传输延迟取决于通信网络在现场设备间的物理长度z,等于信道长度与电磁波在信道上的传播速率C之比:
单总线型网络时延分布如图2所示.层次网络拓扑的网络时延分布如图3所示(由于排队时延发生概率很小,图中忽略).
图2单总线型网络时延
图3 层次拓扑网络时延
在最理想状态下,单总线网络和层次拓扑网络都不发生冲突碰撞,所有的数据都一次性成功发送,这就不用考虑排队延迟,通信延迟变为
tD=ts+tT. (7)
由式(7)可以看出,在网络负载非常小,几乎不发生冲突碰撞的情况下,层次拓扑网络就不如单总线网络有优势.因为层次拓扑网络要经过多级网络,增加了传输时延,而且每经过一层网络就会增加一次发送时延.层次拓扑网络比单总线网络固有延迟增加,实时性变差,增加了网络负担.在实际工程中,排队延迟是不可忽略的,有时候它比发送延迟和传输延迟要大得多,而且具有不确定性,是工业以太网实时性最大的软肋.对于已知的两个节点互相发送数据,发送延迟和传输延迟几乎都是固定的,对网络不确定性几乎没有影响.下面忽略发送延迟和传输延迟,单从确定性方面对排队延迟进行分析。
假设每个时隙节点发送数据的概率为P,冲突后在后面某个时刻重发,但对网络不造成影响(这里的假设与实际情况有出入,先不考虑重传造成的影响和退避时延),则总的节点发送规律符合参数为(n,声)二项随机变量的伯努利实验分布.在r级网络模型中,第r层节点(即叶子节点)的
评论