新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 盘点之人工智能四巨头

盘点之人工智能四巨头

作者: 时间:2016-12-19 来源:网络 收藏



在图像识别方面,谷歌在8月份收购了一家图片分析公司Jetpac。Google研究院也发表了一篇文章,表明未来Google的图形识别引擎不仅仅能够识别出照片的对象,还能够对整个场景进行简短而准确的描述。除此之外,谷歌一直在积极吸引图像识别和计算机视觉方面的专家参与到谷歌的项目研究中来,比如说向研究计算机视觉和模式识别的助理教授Devi Parikh授予了谷歌内部研究奖项Faculty Research Awards和 9万美元的无限制基金,并允许她直接同谷歌的其他研究者和工程师进行合作。



根据德勤发布的一份报告显示,Google在2014年将语音识别的精准度从2012年的84%提升到如今的98%,移动端Android系统的语音识别准确性提高了25%;计算机视觉技术也取得了突飞猛进的发展。如果以计算机视觉技术研究者设置的技术标准来看,自2010年到2014年,图像分类识别的精准度提高了4倍。



5)总结

总体看来,谷歌在人工智能的布局依然符合它“将全世界的信息联系起来并给出最佳处理结果”的使命,在这一目标下,谷歌的行为可以大致分成两个路径,第一是覆盖更多的用户使用场景,从谷歌传统业务覆盖的互联网、移动互联网延伸到智能家居、自动驾驶、机器人(2013年收购了8家机器人公司)等领域,从而抓取到更多信息,这可以看做是信息积累和输入的过程。第二个方面是不知疲倦的做好底层人工智能技术的积累,研发更加高级的深度学习算法,增强图形识别和语音识别能力,从而能对第一阶段收集到的信息进行更好的处理和反馈,这可以看做是信息的处理和用户服务的输出过程。在这两个过程下,谷歌就将人工智能渗透到了其各种产品的方方面面,从而为用户带来更多的使用场景和更加智能的功能。

百度

中国的搜索巨头百度公司与谷歌有些类似,都是以互联网搜索为基础,都是技术导向型公司,而且在人工智能领域的布局也是走在互联网行业的前列。我在文章《搜索引擎到人工智能的终极演进》中提到了目前的搜索引擎看以看作是未来人工智能的雏形,依托于搜索本身积累的用户和数据,再加上云服务、深度学习等技术,很有可能实现从传统的互联网搜索服务向人工智能高级形态的进化。而百度的Andrew Ng也在演讲中提到了人工智能的正循环——拥有深度学习算法之后,将不再惧怕海量数据,反而会因为数据的增长而取得更好的效果,而这些效果将直接体现在图像搜索、语音识别等具体的互联网服务中,从而为用户提供更好服务并吸引更多用户,这又会产生更多数据。因此,百度在人工智能领域的布局既表现出了其作为技术公司的敏感性和前瞻性,同时也可以看做是百度走向未来的必由之路。



1)引进Andrew Ng及组建北美研究院

2014年5月,深度学习专家Andrew Ng(吴恩达)加盟百度,并负责同期成立的北美研究中心。由于相对于传统互联业务,人工智能的技术门槛相对较高,而对于相关技术人才的引起也就显得尤为重要。在谷歌和Facebook相继聘用了Geoffrey Hinton和Yann LeCun之后,百度将另一位人工智能大师Andrew Ng引入,这体现出百度与美国互联网巨头谷歌和Facebook在人工智能领域展开竞争的勇气和实力,而北美研究中心的建立也表明百度将继续与硅谷的互联网巨头争夺人工智能领域的人才。而Andrew Ng与余凯、张潼、AdamCoates、徐伟等组成的顶尖团队将会成为百度发展人工智能坚强后盾。



2)大数据积累和平台开放

大数据是人工智能的基础,而作为天然的大数据企业,百度拥有强大的数据获取能力和数据挖掘能力,百度副总裁王劲更是将百度技术布局描绘为一张剑形图,人工智能、大数据等技术化作剑锋。百度除了做好数据积累和挖掘以外,还加快了大数据平台的开放步伐,于2014年4月发布了大数据引擎,向外界提供大数据存储、分析和挖掘技术,而且在医疗、交通和金融领域有了具体应用。



2014年7月14日,百度凭借自身的大数据技术14场世界杯比赛的结果预测中取得全中的成绩,击败了微软和高盛。2014年9月,百度正式发布整合了大数据、百度地图LBS的智慧商业平台,旨在更好在移动互联网时代为各行业提供大数据解决方案。



3)语音识别和图像识别

2014年12月,美国《福布斯》发布文章称,吴恩达及研究团队发明了一种新的语音识别方法,这款基于深度学习的名为“Deep Speech”语音识别系统可以在嘈杂环境下实现将近 81% 的辨识准确率。卡耐基梅隆大学工程学助理研究教授Ian Lane对其的评价是“百度研究院最近的工作有可能颠覆语音识别在未来的应用效果。” 吴恩达表示,该语音识别系统采用深度学习算法取代了原来的模型,在递归神经网络或者模拟神经元阵列中进行训练,让语音识别系统更加简单。同时这套系统还使用了Nvidia等芯片制造商出品的多枚图形处理器(GPU),这些处理器通过并行连接,能够用比普通计算机处理器更快的速度训练语音识别模型,从而提高工作效率。



在图像识别方面,余凯称摄像头成为连接人和世界信息的重要入口之一。而百度也一直在利用深度学习技术来提高图像识别的精度。2014年9月,百度云结合百度深度学习研究院提供的人脸识别及检索技术,推出云端图像识别功能。11月,百度发布了基于模拟神经网络的“智能读图”,可以使用类似人脑思维的方式去识别、搜索图片中的物体和其他内容。



4)人工智能算法和云计算

百度大脑既需要人工智能算法,也需要云计算中心提供硬件支持。百度大脑通过深度学习来模拟人类大脑的神经元,参数规模达到百亿级别,构建了世界上最大规模的深度神经网络。



百度在国内拥有十几座云计算中心,为满足人工智能在计算和存储上的高要求,还投入使用了4万兆交换机,并在探索10万兆交换机。百度还是全球首家将GPU用于人工智能和深度学习领域、并规模化商用ARM服务器的公司。百度将这些整合在一起,就形成强大的存储计算能力,从而可以进行多样的并行计算,支持生成、配置针对不同应用和场景网络结构,从而为人工智能提供有力的硬件支持。



5)自动驾驶项目

2014年9,百度宣布已经与宝马正式签署合作协议,共同研发自动化驾驶技术。其中,百度的三维地图及相关数据服务也将被融入宝马的车辆导航系统中,为自动驾驶汽车提供技术支撑。双方计划在接下来三年时间内,合作研究高度自动化驾驶在中国道路环境下面临的技术挑战,通过智能技术加强道路行驶安全性,减少交通事故及人员伤亡。



6)总结

百度在人工智能领域的布局可以总结为三点,第一,具有战略眼光,与世界科技巨头保持同步;第二,自身技术基因又使其非常注重技术人才的引进和人工智能底层技术的积累;第三,互联网入口的地位和丰富的产品线使得人工智能技术能够迅速落地,转化成具体的产品和服务。也正因如此,2014年11月首届百度技术节才会以“奇点临近 技术引领未来”为主题,展望如何通过人工智能来改变世界。



评论


技术专区

关闭