新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 热仿真和热特性分析帮助优化汽车LED应用

热仿真和热特性分析帮助优化汽车LED应用

作者: 时间:2016-12-16 来源:网络 收藏


图6显示,通过这个 LED 简化模式,你可以定义电流,然后运用 T3Ster 数据或手动输入计算得出的数据(通常来说没有 T3Ster 数据那样准确),你可以从 T3Ster 或数据表中获得 LED 热特性带来的温度值,你还可以获得 LED 在这个接面温度和电流下的光通量或“热流明”和发热率。LED 的温度会依据不同的电流而有所变化。这些不同的电流和温度变化又造成了光通量的不同。


图6:通过 FloEFD LED 精简模型,你可以获得 LED 在某个特定接面温度和电流的光通量或“热流明”。

早期模拟加快产品开发

LED 的热设计和照明系统都需要做出革命性的改变。LED 使设计师能够更具创造性,通过个人风格和令人印象深刻的设计让品牌或车型脱颖而出。但随着对性能的影响越来越大,加上几乎所有的 LED 都有反射器和散热器,因此几何学就变得更加复杂。热管理策略不断增加的复杂性和变化意味着照明系统热设计方面的一些老旧做法已经不再凑效,仿真在设计过程中变得越发重要。

随着设计与性能之间的依存性越来越高,设计人员需要快速做出各种设计调整,而负责热管理分析的计算流体力学专家则因为快速的设计周期和协调复杂的几何结构而感到压力过大。因此真正自动化的网格生成(无需人工干涉便能生成高质量的网格)显得越发重要。这是与设计同步的计算流体力学解决方案的先决条件,使得设计人员能够在设计过程中进行早期仿真,而且无需深入的数字和计算流体力学知识,从而加快了产品开发进程。

与设计同步的计算流体力学确保对汽车 LED 系统进行成功的热管理

FloEFD 支持的同步计算流体力学方法让你能够对每个设计步骤进行准确的热仿真,从而缩短设计周期。与依靠从 MCAD 系统输出 CAD 模型然后输入计算流体力学系统的典型计算流体力学不同,同步计算流体力学完全嵌入在 MCAD 环境中,因此无需通过STEP 或 IGES 等中性的文件格式转换模型。这些转换通常会丢失原始 CAD 模型中的参数定义。参数定义的几何结构有助于包括设计变量分析在内的模拟。

凭借自动网格生成和其它技术,你只需对产品及其行为有必要的了解便能使用计算流体力学技术。传统情况下耗时最长的步骤——仿真和网格生成——已最大程度地缩短。这项技术的应用延伸至汽车行业的很多领域以及其它行业。图7显示了原始设备制造商工程师如何成功使用这项技术仿真来自他们 MCAD 系统内部的不同汽车应用。



图7:奥迪 A3 车前灯的 FloEFD 模拟图像,展示了为车前灯系统冷却和散热提供新鲜空气的速度等值面

结论

当使用Mentor Graphics的 T3Ster 和 TERALED 进行全面的 LED 热阻瞬态测试(包括光度和辐射测量)时,你会得出高度准确和可重复的真正热阻测量结果,并且在产品设计期间将这些转换成用于计算流体力学仿真的热阻-热容模型。

进行高度加速的寿命测试还能帮助你选择在产品使用期内具有高可靠性的最合适的 LED。此外,热仿真可确保热管理系统在 LED 的整个生命周期提供适宜的环境,并且最大程度地降低对质量和性能的影响。FloEFD 同步计算流体力学方法还通过在设计初期进行仿真加速了产品设计周期,缩短了产品面市时间并削减了开发与样机设计成本。

上一页 1 2 3 下一页

评论


技术专区

关闭