建立一个AVR的RTOS(6)时间片轮番调度法的内核
Round-Robin Sheduling
本文引用地址:https://www.eepw.com.cn/article/201612/325277.htm时间片轮调法是非常有趣的。本篇中的例子,建立了3个任务,任务没有优先级,在时间中断的调度下,每个任务都轮流运行相同的时间。如果在内核中没有加入其它服务,感觉上就好像是有三个大循环在同时运行。
本例只是提供了一个用时间中断进行调度的内核,大家可以根据自己的需要,添加相应的服务。
要注意到:
1,由于在时间中断内调用了任务切换函数,因为在进入中断时,已经将一系列的寄存器入栈。
2,在中断内进行调度,是直接通过"RJMP Int_OSSched"进入任务切换和调度的,这是GCC AVR的一个特点,为用C编写内核提供了极大的方便。
3,在阅读代码的同时,请对照阅读编译器产生的*.lst文件,会对你理解例子有很大的帮助。
#include <avr/io.h>
#include
#include
unsigned char Stack[400];
register unsigned char OSRdyTbl asm("r2"); //任务运行就绪表
register unsigned char OSTaskRunningPrio asm("r3"); //正在运行的任务
#define OS_TASKS 3 //设定运行任务的数量
struct TaskCtrBlock
{
unsigned int OSTaskStackTop; //保存任务的堆栈顶
unsigned int OSWaitTick; //任务延时时钟
} TCB[OS_TASKS+1];
//防止被编译器占用
register unsigned char tempR4 asm("r4");
register unsigned char tempR5 asm("r5");
register unsigned char tempR6 asm("r6");
register unsigned char tempR7 asm("r7");
register unsigned char tempR8 asm("r8");
register unsigned char tempR9 asm("r9");
register unsigned char tempR10 asm("r10");
register unsigned char tempR11 asm("r11");
register unsigned char tempR12 asm("r12");
register unsigned char tempR13 asm("r13");
register unsigned char tempR14 asm("r14");
register unsigned char tempR15 asm("r15");
register unsigned char tempR16 asm("r16");
register unsigned char tempR16 asm("r17");
//建立任务
void OSTaskCreate(void (*Task)(void),unsigned char *Stack,unsigned char TaskID)
{
unsigned char i;
*Stack--=(unsigned int)Task>>8; //将任务的地址高位压入堆栈,
*Stack--=(unsigned int)Task; //将任务的地址低位压入堆栈,
*Stack--=0x00; //R1 __zero_reg__
*Stack--=0x00; //R0 __tmp_reg__
*Stack--=0x80;
//SREG在任务中,开启全局中断
for(i=0;i<14;i++) //在avr-libc中的FAQ中的What registers are used by the C compiler?
*Stack--=i; //描述了寄存器的作用
TCB[TaskID].OSTaskStackTop=(unsigned int)Stack; //将人工堆栈的栈顶,保存到堆栈的数组中
OSRdyTbl|=0x01< } //开始任务调度,从最低优先级的任务的开始 void OSStartTask() { OSTaskRunningPrio=OS_TASKS; SP=TCB[OS_TASKS].OSTaskStackTop+17; __asm__ __volatile__( "reti" "nt" ); } //进行任务调度 void OSSched(void) { //根据中断时保存寄存器的次序入栈,模拟一次中断后,入栈的情况 __asm__ __volatile__("PUSH __zero_reg__ nt"); //R1 __asm__ __volatile__("PUSH __tmp_reg__ nt"); //R0 __asm__ __volatile__("IN __tmp_reg__,__SREG__ nt"); //保存状态寄存器SREG __asm__ __volatile__("PUSH __tmp_reg__ nt"); __asm__ __volatile__("CLR __zero_reg__ nt"); //R0重新清零 __asm__ __volatile__("PUSH R18 nt"); __asm__ __volatile__("PUSH R19 nt"); __asm__ __volatile__("PUSH R20 nt"); __asm__ __volatile__("PUSH R21 nt"); __asm__ __volatile__("PUSH R22 nt"); __asm__ __volatile__("PUSH R23 nt"); __asm__ __volatile__("PUSH R24 nt"); __asm__ __volatile__("PUSH R25 nt"); __asm__ __volatile__("PUSH R26 nt"); __asm__ __volatile__("PUSH R27 nt"); __asm__ __volatile__("PUSH R30 nt"); __asm__ __volatile__("PUSH R31 nt"); __asm__ __volatile__("Int_OSSched: nt"); //当中断要求调度,直接进入这里 __asm__ __volatile__("PUSH R28 nt"); //R28与R29用于建立在堆栈上的指针 __asm__ __volatile__("PUSH R29 nt"); //入栈完成 TCB[OSTaskRunningPrio].OSTaskStackTop=SP; //将正在运行的任务的堆栈底保存 if(++OSTaskRunningPrio>=OS_TASKS) //轮流运行各个任务,没有优先级 OSTaskRunningPrio=0; //cli(); //保护堆栈转换 SP=TCB[OSTaskRunningPrio].OSTaskStackTop; //sei(); //根据中断时的出栈次序 __asm__ __volatile__("POP R29 nt"); __asm__ __volatile__("POP R28 nt"); __asm__ __volatile__("POP R31 nt"); __asm__ __volatile__("POP R30 nt"); __asm__ __volatile__("POP R27 nt"); __asm__ __volatile__("POP R26 nt"); __asm__ __volatile__("POP R25 nt"); __asm__ __volatile__("POP R24 nt"); __asm__ __volatile__("POP R23 nt"); __asm__ __volatile__("POP R22 nt"); __asm__ __volatile__("POP R21 nt"); __asm__ __volatile__("POP R20 nt"); __asm__ __volatile__("POP R19 nt"); __asm__ __volatile__("POP R18 nt"); __asm__ __volatile__("POP __tmp_reg__ nt"); //SERG出栈并恢复 __asm__ __volatile__("OUT __SREG__,__tmp_reg__ nt"); // __asm__ __volatile__("POP __tmp_reg__ nt"); //R0出栈 __asm__ __volatile__("POP __zero_reg__ nt"); //R1出栈 __asm__ __volatile__("RETI nt"); //返回并开中断 //中断时出栈完成 } void IntSwitch(void) { __asm__ __volatile__("POP R31 nt"); //去除因调用子程序而入栈的PC __asm__ __volatile__("POP R31 nt"); __asm__ __volatile__("RJMP Int_OSSched nt"); //重新调度 } void TCN0Init(void) //计时器0 { TCCR0 = 0; TCCR0 |= (1< TIMSK |= (1< TCNT0 = 100; //置计数起始值 } SIGNAL(SIG_OVERFLOW0) { TCNT0=100; IntSwitch(); //任务调度 } void Task0() { unsigned int j=0; while(1) { PORTB=j++; //OSTimeDly(50); } } void Task1() { unsigned int j=0; while(1) { PORTC=j++; //OSTimeDly(5); } } void Task2() { unsigned int j=0; while(1) { PORTD=j++; //OSTimeDly(5); } } void TaskScheduler() { while(1) { OSSched(); //反复进行调度 } } int main(void) { TCN0Init(); OSRdyTbl=0; OSTaskCreate(Task0,&Stack[99],0); OSTaskCreate(Task1,&Stack[199],1); OSTaskCreate(Task2,&Stack[299],2); OSTaskCreate(TaskScheduler,&Stack[399],OS_TASKS); OSStartTask(); }
评论