单片机模拟串口发送和波特率问题
方法1:使用能够支持多串口通信的单片机,不过通过更换其他单片机来代替8051系列单片机,这样就会直接导致成本的增加,优点就是编程简单,而且通信稳定可靠。
方法2:在IO资源比较充足的情况下,可以通过IO来模拟串口的通信,虽然这样会增加编程的难度,模拟串口的波特率会比真正的串口通信低一个层次,但是唯一优点就是成本上得到控制,而且通过不同的IO组合可以实现更加之多的模拟串口,在实际应用中往往会采用模拟串口的方法来实现多串口通信。
普遍使用串口通信的数据流都是1位起始位、8位数据位、1位停止位的格式的,如表1。
表1
要注意的是,起始位作为识别是否有数据到来,停止位标志数据已经发送完毕。起始位固定值为0,停止位固定值为1,那么为什么起始位要是0,停止位要是1呢?这个很好理解,假设停止位固定值为1,为了更加易识别数据的到来,电平的跳变最为简单也最容易识别,那么当有数据来的时候,只要在规定的时间内检测到发送过来的第一位的电平是否0值,就可以确定是否有数据到来;另外停止位为1的作用就是当没有收发数据之后引脚置为高电平起到抗干扰的作用。
在平时使用红外无线收发数据时,一般都采用模拟串口来实现的,但是有个问题要注意,波特率越高,传输距离越近;波特率越低,传输距离越远。对于这些通过模拟串口进行数据传输,波特率适宜为1200b/s来进行数据传输。
例子:在使用单片机的串口接收数据实验当中,使用串口调试助手发送16字节数据,单片机采用模拟串口的方法将接收到的数据返发到PC机。
模拟串口实验代码:
代码分析
在模拟串口实验代码中,宏的使用占用了相当的一部分。
#define RXD P3_0 //宏定义:接收数据的引脚
#define TXD P3_1 //宏定义:发送数据的引脚
#define TIMER_ENABLE() {TL0=TH0;TR0=1;fTimeouts=0;}//使能T/C
#define TIMER_DISABLE() {TR0=0;fTimeouts=0;}//禁止T/C
#define TIMER_WAIT() {while(!fTimeouts);fTimeouts=0;}//等待T/C超时
模拟串口接收引脚为P3.0,发送引脚为P3.1。为了达到精确的定时,减少模拟串口时收发数据的累积误差,有必要通过对T/C进行频繁的使能和禁止等操作。例如宏TIMER_ENABLE为使能T/C,宏TIMER_DISABLE禁止T/C,宏TIMER_WAIT等待T/C超时。
模拟串口的工作波特率为9600b/s,在串口收发的数据流当中,每一位的时间为1/9600≈104us,
若单片机工作在12MHz频率下,使用T/C0工作在方式2,那么为了达到104us的定时时间,TH0、TL0的初值为256-104=152,在实际的模拟串口中,往往出现收发数据不正确的现象。原因就在于TH0、TL0的初值,或许很多人会疑惑,按道理来说,计算T/C0的初值是没有错的。对,是没有错,但是在SendByte和Recv的函数当中,执行每一行代码都要消耗一定的时间,这就是所谓的“累积误差”导致收发数据出现问题,因此我们必须通过实际测试得到TH0、TL0的初值,最佳值256-99=157。那么在T/C初始化TimerInit函数中,TH0、TL0的初值不能够按照常规来计算得到,实际初值在正常初值附近,可以通过实际测试得到。
模拟串口主要复杂在模拟串口发送与接收,具体实现函数在SendByte和RecvByte函数,这两个函数必须要遵循“1位起始位、8位数据位、1位停止位”的数据流。
SendByte函数用于模拟串口发送数据,以起始位“0”作为移位传输的起始标志,然后将要发送的自己从低字节到高字节移位传输,最后以停止位“1”作为移位传输的结束标志。
RecvByte函数用于模拟串口接收数据,一旦检测到起始位“0”,就立刻将接收到的每一位移位存储,最后以判断停止位“1”结束当前数据的接收。
main函数完成T/C的初始化,在while(1)死循环以检测起始位“0”为目的,当接收到的数据达到宏RECEIVE_MAX_BYTES的个数时,将接收到的数据返发到外设。
方法2:在IO资源比较充足的情况下,可以通过IO来模拟串口的通信,虽然这样会增加编程的难度,模拟串口的波特率会比真正的串口通信低一个层次,但是唯一优点就是成本上得到控制,而且通过不同的IO组合可以实现更加之多的模拟串口,在实际应用中往往会采用模拟串口的方法来实现多串口通信。
普遍使用串口通信的数据流都是1位起始位、8位数据位、1位停止位的格式的,如表1。
表1
起始位 | 8位数据位 | 停止位 | |||||||
0 | Bit0 | Bit1 | Bit2 | Bit3 | Bit4 | Bit5 | Bit6 | Bit7 | 1 |
要注意的是,起始位作为识别是否有数据到来,停止位标志数据已经发送完毕。起始位固定值为0,停止位固定值为1,那么为什么起始位要是0,停止位要是1呢?这个很好理解,假设停止位固定值为1,为了更加易识别数据的到来,电平的跳变最为简单也最容易识别,那么当有数据来的时候,只要在规定的时间内检测到发送过来的第一位的电平是否0值,就可以确定是否有数据到来;另外停止位为1的作用就是当没有收发数据之后引脚置为高电平起到抗干扰的作用。
在平时使用红外无线收发数据时,一般都采用模拟串口来实现的,但是有个问题要注意,波特率越高,传输距离越近;波特率越低,传输距离越远。对于这些通过模拟串口进行数据传输,波特率适宜为1200b/s来进行数据传输。
模拟串口实验代码:
1#include"stc.h"
2
3 #defineRXD P3_0//宏定义:接收数据的引脚
4 #defineTXD P3_1//宏定义:发送数据的引脚
5 #defineRECEIVE_MAX_BYTES 16//宏定义:最大接收字节数
6
7 #defineTIMER_ENABLE() {TL0=TH0;TR0=1;fTimeouts=0;}//使能T/C
8 #defineTIMER_DISABLE() {TR0=0;fTimeouts=0;}//禁止T/C
9 #defineTIMER_WAIT() {while(!fTimeouts);fTimeouts=0;}//等待T/C超时
10
11
12unsignedcharfTimeouts=0;//T/C超时溢出标志位
13 unsignedcharRecvBuf[16];//接收数据缓冲区
14 unsignedcharRecvCount=0;//接收数据计数器
15
16
17
23 voidSendByte(unsignedcharb)
24{
25unsignedchari=8;
26
27TXD=0;
28
29TIMER_ENABLE();
30TIMER_WAIT();
31
32
33while(i--)
34{
35if(b&1)TXD=1;
36elseTXD=0;
37
38TIMER_WAIT();
39
40b>>=1;
41
42}
43
44
45TXD=1;
46
47TIMER_WAIT();
48TIMER_DISABLE();
49}
50
56unsignedcharRecvByte(void)
57{
58unsignedchari;
59unsignedcharb=0;
60
61TIMER_ENABLE();
62TIMER_WAIT();
63
64for(i=0;i<8;i++)
65{
66if(RXD)b|=(1<67
68TIMER_WAIT();
69}
70
71TIMER_WAIT();//等待结束位
72 TIMER_DISABLE();
73
74returnb;
75
76}
77
83 voidPrintfStr(char*pstr)
84{
85while(pstr&&*pstr)
86{
87SendByte(*pstr++);
88}
89}
90
96 voidTimerInit(void)
97{
98TMOD=0x02;
99TR0=0;
100TF0=0;
101TH0=(256-99);
102TL0=TH0;
103ET0=1;
104EA=1;
105}
106
112unsignedcharStartBitCome(void)
113{
114return(RXD==0);
115}
116
122 voidmain(void)
123{
124unsignedchari;
125
126TimerInit();
127
128PrintfStr("Hello 8051rn");
129
130while(1)
131{
132if(StartBitCome())
133{
134RecvBuf[RecvCount++]=RecvByte();
135
136if(RecvCount>=RECEIVE_MAX_BYTES)
137{
138RecvCount=0;
139
140for(i=0;i 141{
142SendByte(RecvBuf[i]);
143}
144}
145}
146
147}
148}
149
155 voidTimer0IRQ(void) interrupt1using0
156{
157fTimeouts=1;
158}
159
2
3
4
5
6
7
8
9
10
11
12unsignedcharfTimeouts=0;//T/C超时溢出标志位
13
14
15
16
17
23
24{
25unsignedchari=8;
26
27TXD=0;
28
29TIMER_ENABLE();
30TIMER_WAIT();
31
32
33while(i--)
34{
35if(b&1)TXD=1;
36elseTXD=0;
37
38TIMER_WAIT();
39
40b>>=1;
41
42}
43
44
45TXD=1;
46
47TIMER_WAIT();
48TIMER_DISABLE();
49}
50
56unsignedcharRecvByte(void)
57{
58unsignedchari;
59unsignedcharb=0;
60
61TIMER_ENABLE();
62TIMER_WAIT();
63
64for(i=0;i<8;i++)
65{
66if(RXD)b|=(1<67
68TIMER_WAIT();
69}
70
71TIMER_WAIT();//等待结束位
72
73
74returnb;
75
76}
77
83
84{
85while(pstr&&*pstr)
86{
87SendByte(*pstr++);
88}
89}
90
96
97{
98TMOD=0x02;
99TR0=0;
100TF0=0;
101TH0=(256-99);
102TL0=TH0;
103ET0=1;
104EA=1;
105}
106
112unsignedcharStartBitCome(void)
113{
114return(RXD==0);
115}
116
122
123{
124unsignedchari;
125
126TimerInit();
127
128PrintfStr("Hello 8051rn");
129
130while(1)
131{
132if(StartBitCome())
133{
134RecvBuf[RecvCount++]=RecvByte();
135
136if(RecvCount>=RECEIVE_MAX_BYTES)
137{
138RecvCount=0;
139
140for(i=0;i
142SendByte(RecvBuf[i]);
143}
144}
145}
146
147}
148}
149
155
156{
157fTimeouts=1;
158}
159
在模拟串口实验代码中,宏的使用占用了相当的一部分。
#define RXD P3_0
#define TXD P3_1
#define TIMER_ENABLE()
#define TIMER_DISABLE() {TR0=0;fTimeouts=0;}//禁止T/C
#define TIMER_WAIT()
模拟串口接收引脚为P3.0,发送引脚为P3.1。为了达到精确的定时,减少模拟串口时收发数据的累积误差,有必要通过对T/C进行频繁的使能和禁止等操作。例如宏TIMER_ENABLE为使能T/C,宏TIMER_DISABLE禁止T/C,宏TIMER_WAIT等待T/C超时。
模拟串口的工作波特率为9600b/s,在串口收发的数据流当中,每一位的时间为1/9600≈104us,
若单片机工作在12MHz频率下,使用T/C0工作在方式2,那么为了达到104us的定时时间,TH0、TL0的初值为256-104=152,在实际的模拟串口中,往往出现收发数据不正确的现象。原因就在于TH0、TL0的初值,或许很多人会疑惑,按道理来说,计算T/C0的初值是没有错的。对,是没有错,但是在SendByte和Recv的函数当中,执行每一行代码都要消耗一定的时间,这就是所谓的“累积误差”导致收发数据出现问题,因此我们必须通过实际测试得到TH0、TL0的初值,最佳值256-99=157。那么在T/C初始化TimerInit函数中,TH0、TL0的初值不能够按照常规来计算得到,实际初值在正常初值附近,可以通过实际测试得到。
模拟串口主要复杂在模拟串口发送与接收,具体实现函数在SendByte和RecvByte函数,这两个函数必须要遵循“1位起始位、8位数据位、1位停止位”的数据流。
SendByte函数用于模拟串口发送数据,以起始位“0”作为移位传输的起始标志,然后将要发送的自己从低字节到高字节移位传输,最后以停止位“1”作为移位传输的结束标志。
RecvByte函数用于模拟串口接收数据,一旦检测到起始位“0”,就立刻将接收到的每一位移位存储,最后以判断停止位“1”结束当前数据的接收。
main函数完成T/C的初始化,在while(1)死循环以检测起始位“0”为目的,当接收到的数据达到宏RECEIVE_MAX_BYTES的个数时,将接收到的数据返发到外设。
波特率的研究
8051系列单片机外接能够被除尽的晶振即12MHz、24MHz、48MHz这些晶振时,波特率的精确性就得不到保证。
波特率 (11.0592MHz) | 初值 | 波特率 (12MHz) | 初值 | ||
TH1、TL1 (SMOD=0) | TH1、TL1 (SMOD=1) | TH1、TL1 (SMOD=0) | TH1、TL1 (SMOD=1) | ||
1200 | 0xE7 | 0xD0 | 1200 | 0xE5 | 0xCB |
2400 | 0xF3 | 0xE7 | 2400 | 0xF2 | 0xE5 |
4800 | 0xF9 | 0xF3 | 4800 | 0xF9 | 0xF2 |
9600 | 0xFC | 0xF9 | 9600 | 0xFC | 0xF9 |
14400 | 0xFD | 0xFB | 14400 | 0xFD | 0xFB |
19200 | 0xFE | 0xFC | 19200 | 0xFE | 0xFC |
波特率 (11.0592MHz) | 初值 | 波特率 (12MHz) | 初值 | ||
RCAL2H | RCAL2L | RCAL2H | RCAL2L | ||
1200 | 0xFE | 0xE0 | 1200 | 0xFE | 0xC8 |
2400 | 0xFF | 0x70 | 2400 | 0xFF | 0x64 |
4800 | 0xFF | 0xD8 | 4800 | 0xFF | 0xB2 |
9600 | 0xFF | 0xDC | 9600 | 0xFF | 0xD9 |
14400 | 0xFF | 0xE8 | 14400 | 0xFF | 0xE6 |
19200 | 0xFF | 0xEE | 19200 | 0xFF | 0xED |
如果大家想通过设置不同的晶振获取更加多的波特率的值,可以下载以下工具进行计算:
软件下载地址:http://files.cnblogs.com/wenziqi/单片机多功能助手.rar
评论