GNU ARM汇编--(六)s3c2440的时钟控制
不再发感慨了,下面就对s3c2440的时钟做一个说明,然后给出汇编对时钟的控制代码,最后比较一下有时钟控制和没时钟控制下的流水灯的区别.
本文引用地址:https://www.eepw.com.cn/article/201611/321725.htms3c2440的时钟控制逻辑可以产生3个时钟信号:用于CPU核(ARM920T)的FCLK,用于AHB总线外设(存储控制器中断控制器LCD控制器DMAUSB的主机端)的HCLK和用于APB总线外设(比如WDT IIS I2C PWM timer MMC ADC UART GPIO RTC SPI)的PCLK.s3c2440有两个锁相环,一个是用于FCLK HCLK PCLK的MPLL,一个专用与USB的UPLL.
首先看一下下面的表格:
时钟源可以来自于外部晶振(XTlpll)或者外部时钟(EXTCLK).datasheet中的图7-1显示了时钟的体系框图,这里就不给出了,截出一小部分与上图做个呼应:
这个图就反映了OM[3:2]在XTlpll和EXTCLK之间的选择.
接下来看看TQ2440的原理图是如何处理的:
从原理图可以看出:OM[3:2]为00b,意味着使用晶振来产生MPLL CLK和UPLL CLK.我们的XTIpll接的就是12M的晶振,这时候EXTCLK按照规定是要接高的,对应图如下:
值得注意的是:尽管MPLL在reset后就开始工作了,但是MPLL output只有在软件写有效的设置值到MPLLCON寄存器后才作为系统时钟的.在有效设置之前,外部晶振或者EXTCLK直接用于系统时钟.哪怕是你不想改动MPLLCON寄存器的初始值,你也得将该值写入MPLLCON.
上面的话意味着:如果不进行时钟的设置,那么我的板子就运行在晶振为12M的系统时钟下,这个和s3c2440的400M相去甚远,做流水灯的延时肯定也差数量级的,这个等会就可以看到.
Mpll = (2*m * Fin) / (p * 2^s)
m = M (the value for divider M)+ 8, p = P (the value for divider P) + 2
s3c2440支持FCLK HCLK和PCLK之间的分频比的选择.比例由CLKDIVN寄存器的HDIVN和PDIVN决定.可参见下表:
注意:CLKDIVN要小心设置,不要超出了HCLK和PCLK的限制.如果HDIVN不为0,要用下面的指令,CPU总线模式从Fast Bus Mode变为异步总线模式:
MMU_SetAsyncBusMode
mrc p15,0,r0,c1,c0,0
orr r0,r0,#R1_nF:OR:R1_iA
mcr p15,0,r0,c1,c0,0
下面开始看看寄存器的设置:
LOCK TIME COUNT REGISTER (LOCKTIME)
这个时间是要保证PLL输出频率稳定的,时序图如下:
这个计数器的设置就是时序图中的lock time,而在寄存器说明中规定要大于300us,那么这个时候根据12M的晶振频率,计算如下:
(1/12M)*N>300us 所以N>3600 所以可以用寄存器的默认值0xffff.
PLL CONTROL REGISTER (MPLLCON & UPLLCON)
MPLL Control Register
Mpll = (2 * m * Fin) / (p * 2S)
m = (MDIV + 8), p = (PDIV + 2), s = SDIV
UPLL Control Register
Upll = (m * Fin) / (p * 2S)
m = (MDIV + 8), p = (PDIV + 2), s = SDIV
评论