基于射频识别技术的车辆路口
3.2 RTL8019驱动程序的编写
RTL8019驱动程序做的工作主要是8019的初始化、发送和接收以太网数据包。初始化函数rtl8019_init()是在添加以太网络接口时由netif_add()函数调用,调用过程中首先初始化此接口对应的全局网络接口结构体,然后设置8019的各功能寄存器。初始化完8019之后调用arp_init()函数启动ARP功能,然后用sys_timeout()函数启动ARP缓冲列表生命周期的定时器。数据包的发送首先从ARP缓冲队列中查找目的MAC地址,然后构造以太网数据帧的头部,最后调用底层的发送函数low_level_output()将数据帧发送出去。如果找不到对应的IP/MAC项,发送ARP请求数据帧。数据包的接收由中断[7]处理函数rtl8019_ISR()调用,它的执行过程是先调用最底层的接收函数low_level_input()从8019中接收数据帧,如果接收的是IP数据包,则更新ARP缓冲队列并把数据包传给网络接口结构指定的函数进行处理。如果接收的是ARP数据包,则调用etharp_arp_input()函数处理。最底层的接收发送函数采用的都是8019的远程DMA工作方式以提高性能[8]。
3.3 软件框图
图4 读卡器系统软件框图
信号机的响应级由监控中心的上位机设定,信号机可以在事先获得授权的情况下自主改变灯色,如果事先未获授权,或是同时收到多个不同标签的请求,则信息必须送到监控中心处理,由监控中心的上位机判定优先级后发指令控制信号机的动作。监控中心还可以随时获得特定车辆的位置以及所在区域的路况等信息,通过合理改变区域内信号机的绿信比,达到区域协调控制的目的。
4. 实验结果
监控中心的上位机软件由Mircosoft Visual C++.NET 2003开发。
该系统应用于某市政务区的繁华大道与锦绣大道的交口。由于事先设定由监控中心控制,所以当标签发送通行请求时,读卡器将向监控中心发送请求,监控中心的上位机弹出图5所示的对话框,该对话框显示了车辆所在的路口,车号,车型,车种,请求通行的类型以及请求时间等相关信息,由监控中心决定是否处理其请求,监控中心操作人员可以点击“忽略”以不响应该车辆本次的申请。
图6 上位机软件控制界面
在图5对话框中点击“同意受控”后,将会出现图6所示的设置窗口,左上角的为科学城区域内的主要道路列表,左下角显示了与道路相应的各交口信号机的当前状态,未联机的信号机不显示。右上角为当前发送申请的车辆所在的繁华大道与锦绣大道交口的示意图,通过右下角的列表设定当前路口信号机的执行方案。当前的执行方案如列表中所示,该路口信号机当前执行四个相位的方案,每个相位的灯组号如图示。当前执行的为1号时段方案,对应到本信号机,1号方案表明将一天分为7:00~21:00,22:00~6:00两个时段,每个时段的相位配时不同。后面的时间即为当前时段每个相位的时间长度。通过改变时间长度可以设定放行的时间。
5. 总结
本系统应用于实际的路口,使得特种车辆的通行更加迅速便捷,同时极大降低了人力消耗。作为智能交通系统的一部分,本系统对实现区域协调控制也具有一定的现实意义。
参考文献:
[1] 宋廷强,沈剑良,曲英杰. 一种RFID电子标签的数字部分设计[J].青岛科技大学学报,2008,29(1):72-76.
[2] FINKENZELLER K. 射频识别技术[M].吴晓峰,陈大才,译.北京:电子工业出版社,2006.36-125.
[3] 李岩,荣盘祥. 基于S3C44B0X嵌入式uClinux系统原理及应用[M].北京:清华大学出版社,2005:69-254.
[4] 陈鼐,于盛林. 基于ARM 的LCD 模块接口设计及MiniGUI 实现[J].仪器仪表学报,2007,28(Z4):277-281.
[5] 马连博,苏卫星,胡琨元,等. 基于嵌入式Linux和RFID技术的电子看板设计[J].计算机应用,2007,27(12):283-285.
[6] 那加. 嵌入式实时操作系统uC/OS-Ⅱ在Sharp LH79520处理器上的移植[J].测控技术,2007,26(10):53-56.
[7] 冯玮,喻晓峰.基于ARM系统下映像文件的执行与中断运行机制的实现[J].计算机应用,2006,26(Z1):255—257.
[8] 张蓬鹤,王群,张东辉. RTL8019型控制器与高速数字信号处理器的接口设计及编程技巧[J].国外电子元器件,2006 ,10(8). 47-49.
评论