超声探伤技术在无损检测中的应用
2 超声探伤技术在无损检测中的应用
2.1 机车检测方面的应用
2.1.1 在高速钢轨检测中的应用
我国铁路运营线路近七万公里,而且铁路正在向高速、重载的方向发展。超期服役的钢轨数量很大,线路上的钢轨在承担繁重的运输任务过程中,不免要产生各种肉眼能看见及看不见的损伤如侧磨、轨头压溃、剥离掉块、锈蚀、核伤、水平裂纹、垂直裂纹、周边裂纹等。
如图3所示,当被检钢轨内部有一个裂纹缺陷(或其他缺陷),将超声波探头放在被检钢轨的某一表面部位(该面称作探伤面、检测面),探头向被检钢轨发射超声波信号,超声波穿过界面进入被检钢轨内部,在遇到缺陷和两介质的界面时都会有反射,反射信号被探头接收后,通过探伤仪内部的电路转换,就可以把缺陷信号和底波信号形象地显示出来,如图4所示。根据超声波的声程推算,就可以轻易地将缺陷信号和底波信号区分开,然后通过超声波试块进行定标,就可以实现对钢轨缺陷的定位和定量。
2.1.2 在车轮缺陷检测中的应用
轮对是车辆走行部中最重要的部件之一,对轨道车辆轮对的检测并准确地判断其缺陷位置一直是铁道运输部门非常重视的问题。该系统采用电磁超声探伤技术,实现轮对踏面的缺陷检测,包括:踏面剥离及剥离前期检测;踏面表面及近表面裂纹检测。
电磁超声探伤系统利用超声表面波的脉冲反射原理进行缺陷检测。当轮对沿钢轨运行到探头位置,轮对踏面接触探头的瞬间,EMAT(电磁超声探伤技术)在车轮踏面表面及近表面激发出电磁超声表面波脉冲,超声表面波将沿踏面表面及近表面圆周以很小的损耗传播。如图5所示,超声表面波在踏面双向传播(顺时针和逆时针),沿车轮表面及近表面传播1周后回到探头位置,EMAT探头检测到返回的超声表面波后形成第1次周期回波(图5中RT波);未衰减的超声波继续沿踏面传播,依次形成第2次、第3次周期回波,……,直到能量衰减到设备无法检测为止。
当车轮踏面表面及近表面有裂纹或剥离等缺陷存在时,超声波在缺陷端面处一部分能量被反射,沿原传播路径返回并被探头检测到,形成缺陷回波(图6中E波);另一部分能量绕过缺陷端面继续传播,形成周期性回波(图6中RT波)。通过正常的周期回波(RT)与缺陷回波(E)的对比分析,可以定性分析当前轮对的踏面缺陷状况。
评论