数字信号处理技术在电力网无功补偿中的应用
④ 相位差的分辨率问题:由式(3)计算出的相位差,其分辨率为

取三点xk-1,xk,xk+1,且互相关运算在点xk取得最大值,按下列公式进行插值:

φk+1对式(4)求导并令φ′=0,解出相位差的插值点偏移量:

对96个采样点进行数字滤波后,用式(6)对互相关结果进行插值,计算所得两个信号相位差的精度在0.1°左右,满足设计的精度要求。
根据式(6)可以判定电网各相的容性或感性,确定补偿电容的投、切方向;结合电压、电流有效值的计算公式,就可确定补偿电容的投、切量。
系统总谐波电压畸变率定义为:

式(7)中的Um为各次谐波电压分量的均方根值,U1为基波电压的均方根值。同理可求得总谐波电流畸变率。国标规定,低压电网(<1kV)总谐波电压畸变率(THD)小于5%。
控制器在完成无功功率检测计算后,按时间抽取基-2 FFT算法“分次”对各相电压、电流进行变换,求出基波及各次谐波分量值,进而计算出总谐波电压、电流畸变率,根据上限确定是否报警或投、切补偿电容。
所谓“分次”是指控制器每做一次三相无功功率的计算循环,只对一相电压或电流进行DFT变换,即6个工作循环才完成一次完整的谐波谱分析,目的是提高系统对无功功率判断的速度,更快地对功率因数进行补偿。
基于80C196KC MCU的无功功率检测控制器利用数字信号处理的理论,在技术上实现了数字滤波、相位差的计算和谐波谱分析等。本检测控制器通过试运行,效果良好,在功能上和精度上实现了设计要求。对电网波动不太剧烈的场合,控制效果令人满意。为了更快地跟踪并补偿电网的无功成分,可考虑用DSP芯片,以提高处理的速度。为了得到各信号间的相关特征,可选用高速、高精度、多通道同步采样A/D转换器,以进一步提高补偿效果。
评论