新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 美国CDE电容模块在缓冲电路中的应用

美国CDE电容模块在缓冲电路中的应用

作者: 时间:2011-03-01 来源:网络 收藏

为无缓冲电容时的波形,图3(b)为缓冲电容Cs容量较小时的波形,图3(c)为缓冲电容Cs容量较大时的波形。不难看出,无缓冲电容时,集电极电压上升时间和集电极电流下降时间极短,致使关断功耗大。缓冲电容Cs容量较小时,集电极电压上升较快,关断功耗也较大。缓冲电容Cs容量较大时,集电极电压上升较慢,关断功耗较小。

3IGBT缓冲电路

通用的IGBT缓冲电路有三种形式,如图4所示。图4(a)为单只低电感吸收电容构成的缓冲电路,适用于小功率IGBT模块,用作对瞬变电压有效而低成本的控制,接在C1和E2之间(两单元模块)或P和N之间(六单元模块)。图4(b)为RCD构成的缓冲电路,适用于较大功率IGBT模块,缓冲二极管D可箝制瞬变电压,从而能抑制由于母线寄生电感可能引起的寄生振荡。其RC时间常数应设计为开关周期的1/3,即τ=T/3=1/3f。图4(c)为P型RCD和N型RCD构成的缓冲电路,适用于大功率IGBT模块,功能类似于图4(b)缓冲电路,其回路电感更小。若同时配合使用图4(a)缓冲电路,还能减小缓冲二极管的应力,使缓冲效果更好。

IGBT采用缓冲电路后典型关断电压波形如图5所示。图中,VCE起始部分的毛刺ΔV1是由缓冲电路的寄生电感和缓冲二极管的恢复过程引起的。其值由下式计算:

ΔV1=LS×di/dt(1)

式中:LS为缓冲电路的寄生电感;

di/dt为关断瞬间或二极管恢复瞬间的电流上升率,其最恶劣的值接近0.02Ic(A/ns)。

如果ΔV1已被设定,则可由式(1)确定缓冲电路允许的最大电感量。例如,设某IGBT电路工作电流峰值为400A,ΔV1≤100V,

则在最恶劣情况下,

di/dt=0.02×400=8A/ns

由式(1)得

LS=ΔV1/(di/dt)=100/8=12.5nH

图中ΔV2是随着缓冲电容的充电,瞬态电压再次上升的峰值,它与缓冲电容的值和母线寄生电感有关,可用能量守恒定律求值。如前所述,母线电感以及缓冲电路及其元件内部的杂散电感,在IGBT开通时储存的能量要转储在缓冲电容中,因此有

LPI2/2=CΔV22/2(2)

式中:LP为母线寄生电感;

I为工作电流,

C为缓冲电容的值;

ΔV2为缓冲电压的峰值。

同样,如果ΔV2已被设定,则可由式

图5采用缓冲电路后IGBT关断电压波形



关键词:

评论


相关推荐

技术专区

关闭