电压型滞环控制的同步Buck变换器
滞环控制与其它控制相比最大的优点在于它的响应速度,这点将在后面的仿真中得到验证。这是因为,不像其它的控制那样,滞环控制不需要慢的反馈环。在开关周期内,当瞬态发生时即响应瞬态负载电流。它的瞬态响应时间仅与滞环比较器和驱动电路的延迟有关。比较器输入端的高频滤波电容也增加了一些额外的延迟。这些延迟大都与选取技术水平有关,因此,滞环控制在理论上是最快的控制方式。
3.2 开关频率的估算
在输出滤波因数决定后,应该估计电源的开关频率。如果估计的开关频率太高,功率MOSFET的开关损耗就高,导致效率低于最佳的效率。如果估计的开关频率太低,电感值会增大,从而引起不理想的瞬态响应。
为了正确地估算出滞环调节器的开关频率,图8中的输出电压是所需稳定状态的值。图7中输出电压的纹波也被研究。电容包括引起纹波的三个参数是:ESR,ESL和电容值。
Vp-p(t)=Vc(t)+VESR(t)+VESL(t)(1)
参考[4],功率级变换器的开关频率的代数式为
fs=(2)
式中:Vin为输入电压;
Vo为输出电压。
图8 所需稳定状态的输出电压
3.3 仿真与实际应用
图9和图10分别是采用PSPICE仿真所得到的滞环电压控制和传统电压型控制在负载发生变化时输出电压的波形图。可以明显地看出滞环控制的输出电压重新进入稳定状态的时间为0.1ms,对于负载瞬态有近乎同步的响应。而传统电压型控制则需要4ms的时间。
图9 滞环控制输出电压的波形
图10 传统电压型控制输出电压波形
在实际的应用中,采用TI公司的TPS5210芯片设计完成了输入电压为12V,输出电压为2V,输出电流峰值为20A的电压型滞环控制的同步Buck变换器,其工作效率可以达到88%,从而验证了该理论的适用性。
4 结语
电压型滞环控制比其他的控制方法有很多的优点,例如:电路简单,不需要反馈环路的补偿,对于负载瞬态有近乎同步的响应,对开关导通时间没有限制等。本文对电压型滞环控制和同步Buck变换器的基本原理进行了阐述,并详细分析了两项技术结合的电压型滞环控制的同步Buck变换器技术,并将电压型滞环控制与传统电压型控制对瞬态负载变化的输出电压进行了仿真比较和实际应用验证。文章最后简单地给出了对滞环控制的开关频率进行估算的方法。
评论