计算机电源“白金”化
下一页的图 6 显示了同步FET(QE 和 QF)栅极的波形图,它们通过图 3 所示 OUTE 和 OUTF 信号驱动。这些信号都产生自 TI 新的 UCC28950 相移、全桥接控制器。图 6 表明 FET QE 和 QF 导通的同时主体二极管没有导电。尽管仍然可以看到一些主体二极管导电,但没有图 5 那么多。本文引用地址:https://www.eepw.com.cn/article/178952.htm
图 6 显示了 QE 和 QF 低主体二极管导电的波形图
我们对两种驱动方案(OUTA 和 OUTB 与 OUTE 和 OUTF)从 20% 到满负载条件下 600-W DC/DC 转换器的效率进行了测量。在下一页的图 7 中,显示了这两种驱动方案的转换器效率数据。我们可以看到,相比使用 OUTA 和 OUTB,在 50% 到 100% 负载时使用 OUTE 和 OUTF 的效率高出约 0.4%。0.4% 效率增加看起来似乎并不多,但在设计人员努力想要达到“白金”标准时效果就不一样了。
图 7 不同 QE 和 QF 驱动方案下 600-W DC/DC 转换器的效率
结论
即使我们可以通过一个并非为同步整流(OUTA 和 OUTB 驱动方案)而设计的相移、全桥接控制器来对一个具有同步整流器的相移、全桥接转换器进行控制,实现 ZVS 所要求的 OUTA 和 OUTB 之间接通延迟也会使两个同步 FET 在同一时间 (tDelay) 关闭。这种延迟会导致在 FET 快速续流期间出现过多的体二极管导电。本文表明更加有效的方法是:在快速续流期间叠加同步整流器的“接通”时间,以便让体二极管不导电。利用这种方法,虽然体二极管导电并没有完全消失,但其被极大减少,从而提高了整体系统效率,让“白金”效率标准更容易达到。
评论