新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 正负脉冲型电动车智能充电器的设计

正负脉冲型电动车智能充电器的设计

作者: 时间:2013-05-18 来源:网络 收藏

1.2 控制电路
普通充电方式在充电过程中温升较大,容易产生析气,影响充电效率,同时温升会损伤蓄电池。本文中的充电方式采用充电-停充-放电-停充-充电的循环过程,程序中设定每周期内充电时间和放电时间。通过一组MOS管的开通和关断来实现,控制正脉冲的为P型MOS管IRF9530,控制负脉冲的为N型MOS管IRF530。另外,目前普通充电器定时一般采用定时芯片,增加了额外成本。本文中直接在单片机中定时,时间到则发出信号,强制进入浮充阶段,再过一定时间后单片机发出信号,控制MOS管切断电源,达到断电目的,节约成本。

本文引用地址:https://www.eepw.com.cn/article/175795.htm

b.JPG


如图3所示,变压器输出的交流信号经过二极管D19、D8整流和电容C14、C16滤波成为直流电压,电阻R21、R95为假负载,用来防止在充电器没有接负载(蓄电池)时电压升高,保证充电器电压的稳定。MOS管Q2、Q3用来控制正负脉冲产生,Q2为PMOS管。用来控制充电电压的通断,Q3为NMOS管,用来控制蓄电池放电。单片机RA2脚经限流电阻R46控制NPN三极管Q8的通断,当单片机输出为高电平时,三极管Q8导通,电阻R33、R31经过Q8接地,构成回路,电阻R33、R31进行分压后接到Q2的栅极,驱动Q2导通;同理,当单片机RA2脚输出低电平时,Q2关断。其中小电容C17用来防止电压突变对Q2的影响,使得电压变化略趋于平缓但又不会影响开关速度。单片机RC1脚经限流电阻R45控制NPN型三极管Q10和PNP型三极管Q11,从而控制MOS管Q3的通断。当单片机RC1脚输出高电平,三极管Q10导通,Q11截止,电压VCC经三极管Q10、电阻R51后控制NMOS管Q3导通;当单片机RC1脚输出低电平时,三极管Q11导通,Q10截止,Q3结电容中的电通过Q11迅速释放,加速Q3关断。电感L1、电容C18用于滤波,使输出电压更平稳。电阻R23为电流取样电阻,流过蓄电池的电流会在电阻R23上产生压降,此电压在电路中用于判断充电状态和充电阶段。
1.3 单片机系统电路
PIC16F676单片机6采用RISC型CPU内核,仅需学习35条指令,除了跳转指令以外所有指令都是单周期的,由于采用哈佛总线结构,以及指令的读取和执行采用流水作业方式,使得PIC单片机的运行速度大大提高;PIC单片机是最节省程序存储器空间的单片机,驱动能力强,每个I/O口的吸入和输出电流最大值可达25mA。PIC系列单片机集成了上电复位电路、I/O引脚上拉电路、看门狗定时器等,可以最大程度地减少或免用外接器件,以便实现“纯单片”应用。

c.JPG


如图4所示,电阻R1和电容C15组成单片机复位电路,单片机IC4和复位电路构成了单片机最小系统。单片机1脚接电源VCC,14脚接地,7脚通过二极管D9输出信号,当7脚输出高电平时充电状态强制进入浮充状态,减小充电电流,防止损伤蓄电池。电阻R54为上拉电阻,防止单片机输出的信号驱动能力不足而无法正常工作。单片机9脚用于驱动NMOS管Q3,11脚用于驱动PMOS管Q2。普通三段式充电由于初始充电电流很大,这对于过放电后的蓄电池是致命的,因此必须进行判断。本文方案在充电初始阶段,单片机控制MOS管关断,利用电阻R50和R41对蓄电池电压进行分压,输入单片机10脚,10脚采样蓄电池电压,判断蓄电池极性是否正确,如不正确,则不进行充电,利用指示灯进行提示;如正确,再判断是否过放电,如果电压低于设定值,认定蓄电池过放电,则采用小电流进行充电,即涓流充电,当蓄电池可以承受大电流时再进入常规三段式充电阶段。单片机12脚、13脚控制指示灯LD1,12脚控制红灯,13脚控制绿灯,用于指示蓄电池充电状态。



评论


相关推荐

技术专区

关闭