基于DDS的程控信号发生器设计
2.2 键盘控制电路
键盘是人工干预单片机进行控制的重要手段,可以实现向单片机输入数据、传送命令、切换功能等。键盘可分为独立式键盘和矩阵式键盘,独立式键盘结构简单,各个键彼此独立,每个按键与一根数据输入线相连。该结构简单,使用方便,但是,随着按键数量的增加所占用的I/O口线也同时增加。
2.3 显示电路
键盘和LED(Light Emitting Diode)显示是单片机应用系统实现人机对话的基本方式。频率显示电路主要由移位寄存器74HC164、数码管以及发光二极管组成,根据数码管驱动方式的不同,可以分为静态式和动态式两类。静态驱动的优点是编程简单,显示亮度高,缺点是占用I/O端口多。实际应用时必须增加译码驱动器进行驱动,增加了硬件电路的复杂性。动态显示的效果和静态显示是一样的,能够节省大量的I/O端口,而且功耗更低。
由于编程简单,且I/O口可以满足需要,本设计选用静态显示方式。在静态的显示方式下,每位数码管的a~h端与一个8位的I/O口相连。当要在某一个数码管上显示字符时,只要从对应的I/O口输出并锁存其显示代码即可。
AD9851输出的正弦波最大频率为70 MHz,分辨率为0.04 Hz,所以本设计选择6个数码管显示,同时选择6个移位寄存器74HC164。74HC1 64是8位串行输入并行输出移位寄存器,每接一片74HC164可以扩展一个8位并行输出口,作为LED显示器的8根段选线。显示电路因由6个数码管组成,因此有6个74HC164级联在一起,前一级74HC164的QH端同时作为下一级74HC164的串行数据输入端。最左边的74HC164的数据输入端的数据是由AT89S52的P3.0脚模拟串行输入数据,所有的74HC164的同步时钟输入端(Clock)连接在一起,由单片机的P3.1脚模拟时钟输入。
但是如果只有6个数码管显示是不够的,因此,加入3个发光二极管,把输出频率数值分为Hz,kHz,MHz三个档。3个发光二极管分别经过200 Ω的电阻由单片机的P3.4,P3.5,P3.6控制。例如,当输出频率应以kHz为单位时,“kHz”发光二极管亮,则数码管显示的频率数值是以kHz为单位的,这样就能精确显示0~70 MHz的频率范围。
2.4 AT89S52和AD9851最小应用系统设计
单片机最小应用系统是指没有外围器件及外设接口扩展的单片机系统。它是单片机应用系统的设计基础,包括最小系统结构选择、时钟系统设计和复位系统设计。通常情况下,单片机最小应用系统分三种结构:
(1)总线型总线应用的最小系统结构,该结构由总线型单片机、复位电路、时钟电路、I/O口及并行扩展总线组成。
(2)总线型非总线应用的最小系统结构,是只有单片机、复位电路构成的最简单的电路,并行总线不用于外围扩展;可作为应用系统的I/O口使用。
(3)非总线型单片机的最小系统结构。本设计中的电路连接图(图1)属于总线型非总线应用的最小系统结构。
最小应用系统设计中单片机的选择一般遵循以下原则:
(1)所选的单片机应最大程度的满足构成单片机最小应用系统的要求,即性能/配置比约为1。
(2)根据产品要求,优先选择专业型单片机。最小系统的结构与所选的单片机型号有关。
2.4.1 AT89S52单片机的时钟系统设计
AT89S52的振荡器有两种组成方式,即片内振荡器和片外振荡器。本设计选择片内振荡器的组成方式。
2.4.2 AT89S52单片机的复位系统设计
复位即是在复位端加不小于指定宽度的低电平(低电平复位)或高电平(高电平复位)信号使单片机的硬件处于初始状态。单片机复位有低电平复位和高电平复位两种,电平复位引脚定义为RST或RESET。
单片机的复位通常有上电复位,信号复位和运行监控复位三种方式。本电路设计采用按键电平复位方式,实际上属于上电复位和按键手动复位形式。
2.4.3 AD8951应用设计
AD9851可以产生一个频谱纯正,频率和相位均可编程控制且稳定度很好的模拟正弦波,AD9851的应用设计图如图2所示。在电路中,40位的频率/相位控制字由AT89S52的P0口输入AD9851的数据输入端(D0~D7),采用并行方式传送数据。在AD9851中,为了避免要求高速参考时钟振荡器,在AD9851的内部有一个6倍频参考时钟乘法器,这就减少了由于外部频率源过高而产生的相位噪声,外部只需30 MHz的有源振荡器。AD9851内部的高速比较器可接收DAC外部的低通滤波器的输出,产生一个低抖动输出脉冲,这个脉冲的频率和相位可以通过程序来进行调解。本文引用地址:https://www.eepw.com.cn/article/172726.htm
评论