TOPSwitch GX系列第四代单片开关电源的原理分析
本文引用地址:https://www.eepw.com.cn/article/171524.htm
进一步分析可知,开关损耗是由片内功率开关管MOSFET的电容损耗和开关交叠损耗这两部分构成的。这里讲的电容损耗亦称CV2f损耗,它是指储存在MOSFET输出电容和高频变压器分布电容上的电能,要在每个开关周期开始时被泄放掉而产生的损耗。交叠损耗则是由于MOSFET存在开关时间而产生的。在MOSFET的通/断过程中,有效的电压和电流同时加到MOSFET上的时间很短,而MOSFET的开关交叠时间较长,这势必造成功率损耗。单片开关电源内部加有很小的米勒(Miller)电容,使得MOSFET的开关速度更快,其交叠损耗仅为分立开关电源的1/10左右,可忽略不计。但是,由TOPSwitchGX构成的开关电源在额定输出功率下,MOSFET的电容损耗仍占总功耗的7%左右,这是不容忽视的问题。特别当开关电源的负载很轻时,电容损耗在总功耗中所占份额还会进一步增加。因此,轻载时令TOPSwitchGX处于低频开关状态,这对于降低MOSFET的电容损耗至关重要。
3.2内部极限电流与外部可编程极限电流
TOPSwitchGX的漏极极限电流,既可由内部设定,亦可从外部设定。这是它与TOPSwitch并虻牧硪幌灾区别。其内部自保护极限电流ILIMIT的最小值、典型值和最大值见表3,测试条件为芯片结温TJ=25℃。ILIMIT会随环境温度的升高而增大。TOPSwitchGX在每个开关周期内都要检测MOSFET漏苍醇导通电阻RDS(ON)上的漏极峰值电流ID(PK)。当ID(PK)>ILIMIT时,过流比较器就输出高电平,依次经过触发器、主控门和驱动级,将MOSFET关断,起到过流保护作用。将TOPSwitchGX与TOPSwitch并蚪行比较后不难发现,TOPSwitchGX的极限电流容许偏差要小得多。例如TOP223P/Y的容差为1.00±0.1A,相对偏差达(±0.1/1.00)×100%=±10%。而TOP244P/G的容差为1.00±0.07A,相对偏差减小到(±0.07/1.00)×100%=±7%。这表明,用TOP244P/G代替TOP223P/Y来设计开关电源时,由于TOP244P/G不需要留出过多的极限电流余量并且它把最大占空比提高到78%(TOPSwitch并蚪鑫67%),因此在相同的输入功率/输出电压条件下,TOPSwitchGX要比同类TOPSwitch并虻氖涑龉β矢叱10%~15%,并且还能降低外围元件的成本。
为方便用户使用,也可从外部通过改变极限电流设定端(X)的流出电流IX(用负值表示,单位是μA),来设定极限电流I′LIMIT值。I′LIMIT的设定范围是(30%
~100%)·ILIMIT。
表3内部自保护极限电流值
TOPSwitchGX系列产品型号 | 极限电流ILIMIT(A) | ||
---|---|---|---|
最小值(ILIMIT(min)) | 典型值(ILIMIT) | 最大值(ILIMIT(max)) | |
TOP242P/G/Y | 0.418 | 0.45 | 0.481 |
TOP243P/G | 0.697 | 0.75 | 0.802 |
TOP243Y | 0.837 | 0.90 | 0.963 |
TOP244P/G | 0.930 | 1.00 | 1.070 |
TOP244Y | 1.256 | 1.35 | 1.445 |
TOP245Y | 1.674 | 1.80 | 1.926 |
TOP246Y | 2.511 | 2.70 | 2.889 |
TOP247Y | 3.348 | 3.60 | 3.852 |
TOP248Y | 4.185 | 4.50 | 4.815 |
TOP249Y | 5.022 | 5.40 | 5.778 |
3.3远程通/断
TOPSwitchGX是通过改变线路检测端流入(或流出)电流IX的大小及方向,来控制开关电源通、断状态的。线路检测端内部还增加了开启电压为1V的电压比较器,此开启电压可用于远程通/断控制。对于P/G封装的芯片,把晶体管或光耦合器的输出接到多功能端(M)与源极(S)之间,就用正逻辑信号(高电平)起动开关电源,加低电平信号则关断;而接在多功能端与控制端(C)之间,就改用负逻辑信号(低电平)起动开关电源,加高电平则关断。对于Y封装的芯片,将晶体管或光耦的输出分别接极限电流设定端(X)、线路检测端(L),亦可对开关电源的通/断进行遥控。
评论