新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于单片机控制的单端正激双向DC/DC变换器

基于单片机控制的单端正激双向DC/DC变换器

作者: 时间:2013-03-20 来源:网络 收藏

3.2 系统软件设计
系统工作分为两个过程:降压变换和升压变换。在降压变换中,对采样电压信号进行A/D转换,通过增量式数字PI算法调节占空比的大小,产生PWM波形,控制输出端电压。在升压变换中,对采样电流信号进行A/D转换,通过增量式数字PI算法调节占空比的大小,产生PWM波形,控制输出端电流。主程序流程如图5所示。

本文引用地址:https://www.eepw.com.cn/article/170558.htm

i.JPG



4 系统仿真分析
这里采用PSPICE对系统主电路进行仿真。仿真参数为:输入电压400 V,输出电压2 V,电感14.2 μH,电容9 900 μF,开关频率55 kHz,变压器变比170:3,最大占空比0.4,负载电阻1 kΩ,图6示出仿真波形。

j.JPG


图6a中自上至下分别为能量正向流动时V1~V3驱动电压及反向流动时V2,V3驱动电压波形。可见,能量正向流动时,ugV1与ugV2同步产生,ugV2与ugV3形成互补,并加有死区时间;反向流动时,V2和V3交替导通以保证能量正常传输,两者也有重叠导通的时间来保证电流完成必要的换流。
图6b为能量正向流动时DC/DC的输出电压Uo及能量反向流动时输出电流Io波形。可见,系统电压动态响应较好,实现了从400~2 V的能量转换。当反向工作时,蓄电池的输出电流保持恒定,纹波较小,电感设计较为准确。

5 实验分析
实验样机主要元件选型和参数如下:V1根据输入电压为400 V等工作条件,采用型号为IXFN100N50P的功率MOSFET;V2,V3采用专门用于的MOSFET管IRL3803;储能电感L=14.2 μH;输出滤波电容为9 900 μF;负载为蓄电池。实验结果如图7所示。图7a为给蓄电池充电时V2和V3的PWM驱动波形。由于此时V1与V2同步,因此可较明显看出两路驱动信号形成互补,并有死区,与理论分析完全吻合。图7b为能量反向流动时V2和V3的PWM驱动波形,此时V1不工作。由实验波形可见,开关频率近似为55 kHz,PWM的占空比近似为0.4,实现了能量的双向流动。

k.JPG



6 结论
详细介绍了一种基于单片机控制的双向升降压DC/DC设计方案。通过仿真和实验分析,验证了该变换器方案的可行性,工作安全可靠且具有良好的电源特性。整个系统成本低,且采用全,硬件设计简单,可靠性较高,故对于需要能量双向流动控制的场合应用较方便。

dc相关文章:dc是什么



上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭