新闻中心

EEPW首页 > 光电显示 > 设计应用 > LED的电学、热学及光学特性研究

LED的电学、热学及光学特性研究

作者: 时间:2011-05-17 来源:网络 收藏

本文引用地址:https://www.eepw.com.cn/article/169008.htm

不同偏压电流下1W 红光LED 的发光量随壳温(实线)以及结温(虚线)的变化曲线

图6:不同偏压电流下1W 红光 的发光量随壳温(实线)以及结温(虚线)的变化曲线

  被测元件固定于一个热电制冷片上,而热电制冷片安装在一个满足CIE[13]规范和推荐设置的积分球中。在进行光测量时,热电制冷片可保证 的温度稳定,而在进行热测试时,它就是 的散热冷板。在热和电的条件都不变的前提下对LED 或LED 组件进行光测试,我们可以得到在特定情况下的LED 发光功率(如图6 所示)。

  当所有的光测量完成后,我们将被测LED 关掉,并用MicReD 公司的T3Ster 仪器对其进行瞬态冷却过程测量。在用T3Ster 进行测量时,我们使用与测试二极管时相同的测试仪器设置。热瞬态测试可以给出热阻值,所以元器件的结温可以通过热电制冷片的温度反推计算出来。

  根据瞬态冷却曲线,并同时考虑元件的有效光能输出,我们可以计算出被测元件的热阻曲线。而热阻曲线又可以被转换成结构函数曲线,从结构函数中即可用前面讨论的方法得到LED 封装的CTM 模型。

  3. 板级电-热仿真

  3.1 用同步迭代法进行电-热封闭仿真的原理

  我们用同步迭代法[14][15]进行处在电路中的半导体元件的电-热仿真。

  对于安装于基板上的有源半导体器件来说(如大型芯片上的晶体管或者MCPCB 上的LED),其热简化模型的边界条件独立性十分重要,这就要求其基板与元件自身的接触面以及基板与散热环境之间的关系这两个条件应该尽量接近实际应用情况。基于边界条件的基板模型可根据实际应用环境来确定。然后,包含元件和基板的热阻网络就可以和电路一起用同步迭代法进行协同求解了。我们用半导体元件的电-热模型把电、热两种网络协同起来:每个元件都用一个热节点来代替(如图7)。

  元器件的发热量通过热节点来驱动整个热网络模型。元件的电参数与其温度有关,可根据热网络模型的计算结果推算出来。利用电压与电阻之间的关系以及温差与热阻之间的关系,电和热的网络可进行联立迭代求解,并可以给出一组封闭解[16][17]。

  3.2 基板的简化热模型

  对于任何基于同步迭代法进行电-热协同仿真的仿真工具来说,最核心的问题都是怎样生成并高效处理与与散热边界条件相关的基板的动态简化热模型。在处理这个问题时,可以把热网络模型看成是一个有N 个端口的网络,对于其中任何一个端口来说,它都对应某个半导体元器件(如图7)。这个N 端口模型通过N 个驱动点的阻力特征来描述给定半导体元器件到环境的热阻特征,同时,用Nx(N-1)传热热阻来描述同一块基板上不同元器件之间的耦合热阻。

  NID 方法用的是时间或者频域响应来生成简化热模型[8][18]。用一个快速的热仿真工具[19]对响应曲线进行计算,即可得到用NxN 表示的、涵盖所有时间常数范围的基板热曲线。然后把时间常数转换成RC,即可用RC 的组合得到一个阶梯状热阻网络(阶梯数目的多少可根据需要的精度来确定),这个热阻网络即可和电网络一起用高效的计算方法进行仿真计算[20]。

安装于一个用N-Port 方法建立的基板简化热模型上的二极管的电-热模型示意图

图7:安装于一个用N-Port 方法建立的基板简化热模型上的二极管的电-热模型示意图

  3.3 板级扩展

  热仿真计算器会对回路中每一个热源进行热时间常数的自动计算。对于芯片级的IC 来说这种计算方法非常适用。

  当器件的电性能与温度的相关性不大时我们可以使用“仅进行热仿真计算”模式。热仿真计算器现在是可以直接使用半导体封装的DCTM 模型的。通过对DCTM 及PWB 的详细模型一起进行仿真计算,我们就能得到元件以及基板的温度[6]。

  在进行电-热协同仿真时,通常不仅想了解温度变化的情况,同时还想了解温度对电波形的瞬态影响。我们近期对仪器的功能进行了扩展,扩展后的仪器适用于用来生成固定于任何基板上的半导体元件的用于电-热仿真的DCTM 模型[21]。对于基板的N 端口网络模型来说,可以用和芯片的网络模型相同的方法来计算得到。在用DCTM 建立封装自身的模型时,其N 端口网络模型还应该同时考虑到管脚结构形式对模型的影响。

  将DCTM 模型放到到元件管脚对应的基板位置以及元件自身电-热模型的结对应的位置之间,然后即可用电-热仿真工具进行求解计算。

  4. 不同结构LED 的模型

  对于LED 来说,其发热功率应该等于总输入功率减去有效发光功率,这个热量才是应该附加给封装简化热模型的功率值:

heat el opt P = P − P

  在我们前面的工作中提到,对于有些LED,它们有可能存在一个由串联电阻产生的固定热损耗[2]。因此,总发热量应该等于结和串联电阻发热量之和:

heat D opt R P = P − P + P

  其中D P 为总输入电功率, R P 为串联电阻的发热量。这个参数的确定方法很简单:2.2 节中我们曾讨论了用协同测量的方法确定opt P ,用同样的电路连接方式也可以测出串联电阻的发热量值。

  串联电阻的位置可能跟结的位置非常接近,也可能离得非常远,通过这个特征我们可以把LED 的热模型分为热电阻型和冷电阻型两类。它们的区别在于,对于热电阻型来说,串联电阻产生的热量会和结产生的热量一起沿着结-管脚的热流路径流动,而对于冷电阻型来说,热则沿着不同的路径流动。在建立LED 的电-热仿真模型时,一定要注意到这个不同点。



评论


相关推荐

技术专区

关闭