基于模糊控制的水下潜器沉浮控制方法
针对EBP算法收敛速度慢的问题,采用Delta-Bar-Delta学习规则对学习速率进行在线调整,以提高收敛速度。
以αij为例,βij、γij同理:

其中,ξ是一个正实数,参数a、b、ξ根据实际情况自定。典型值为:10-4≤a≤0.1,0.1≤b≤0.5,0.1≤ξ≤0.7。
3 仿真分析
假定潜器在水下1 990 m处于悬浮平衡状态,油泵充抽油率为10 N/S,突然受到一瞬时外力的扰动作用,使得潜器获得了向上或向下的速度(12 m/s或-12 m/s)。利用计算机仿真潜器在基于自适应模糊控制方法下的沉浮控制效果,仿真效果如图4、图5所示。仿真结果表明:采用自适应模糊控制方法实现对水下潜器的自主沉浮控制是完全可行的,能够在受到一定扰动的情况下仍保持定深悬浮的稳定状态。本文引用地址:https://www.eepw.com.cn/article/161986.htm
4 结束语
良好的自动沉浮控制能力对于水下潜器来说是至关重要的,是保证水下潜器能够进行正常工作的前提条件。由于水下潜器在水下的低速运动表现为耦合非线性,因此,水下潜器自动沉浮控制系统必然是一种惯性大、时滞、非线性的复杂控制系统。本文提出的基于模糊控制的沉浮控制方法从优化隶属函数入手,采用多层前向神经网络的误差反向传播(EBP)算法对它的参数进行在线修正,并采用Delta-Bar-Delta学习规则对学习速率进行在线调整,使EBP算法具有较快的收敛速度,同时避免了局部极小值问题,在实际工程中具有广阔的应用前景。此外,隶属函数的优化还可以考虑将神经网络与其他智能方法相结合,以期能够获得更快的控制效果。
评论