基于HFSS的双脊喇叭天线的设计与仿真
按照上面双脊喇叭天线的设计方法,利用电磁仿真软件HFSS,此软件拥有强大的天线设计功能,设计了1副1~18 GHz的天线并加工成型,它的仿真结构如图1所示,其具体尺寸为:喇叭口面240 mm×139 mm,喇叭底面86 mm×67 mm,短路板截面26 mm×16 mm,喇叭的轴向长度152 mm,用50 Ω同轴线馈电,N型接头的芯线半径为0.65 mm,插入的腔体半径为1.5 mm,脊曲线方程为
为了分析所设计天线的方向图,增益及驻波比,本文不仅给出了电磁仿真软件HFSS的仿真结果,而且还给出了微波暗室的测量结果。为了对这两个结果进行比较,将电磁仿真软件HFSS得到的仿真数据和微波暗室得到的测量数据分别导入到MATLAB里面,通过MATLAB进行处理,得到了二者电性能特性的比较图。从图4可见,VSWR除了在低端1 GHz~1.6 GHz范围内较大外,其余工作点都小于2.5,满足实际的工程要求。要观看此天线的增益及方向性,由于频带太宽,测量和仿真得到的数据量太大,因此我们仅给出了不同频段上典型频率点的增益方向图。其中图5、图6为低频段中心频点的H面及E面增益方向图,由图可见增益很理想,H面及E面都大于13 dB,3 dB主瓣宽度较小,波束集中,随着频率的升高增益开始慢慢下降,波束变宽且趋于平坦,当到达整个频带的中心频点10 GHz时,由图7、图8可见,H面增益降为11.5 dB,E面略有下降,3 dB主瓣宽度都增大了,随着频率继续升高到达13 GHz时,由图9、图10可见,H面主瓣波束稍有波动,E面主瓣波束出现1 dB的凹陷,三维方向图仍是单一的主瓣。当f≥15 GHz后,E面及H面方向图都出现凹陷,三维方向图才开始出现分裂,如图11所示,随着频率的升高,直到18 GHz主瓣也没有出现大的凹陷,性能参数明显提高了,并且仿真的二维方向图与测量的二维方向图除了在两侧低副瓣区差异较大外(这主要是因为仿真和测量中馈电喇叭周围的空间环境不相同而造成的),在主瓣区基本是吻合的。这说明所给出的设计方案是合理的,对天线的电性能特性利用电磁仿真软件HFSS的分析结果是有效的。
3 结 论
本文给出了一个宽带双脊喇叭天线的设计方法,并利用电磁仿真软件HFSS具体设计了一幅1 GHz~18 GHz宽带双脊喇叭天线。仿真及测量结果都较为理想,可满足更高的实际要求,对工程上设计此类天线具有一定的参考价值。
评论