基于模糊输入的BP-ART2混合神经网络在电力变压器故障综合诊断中的应用
第一块模糊神经网络采用特征气体,如H2,C2H2,CH4,C2H4,C2H6,CO及CO2等测定值作为输入,产生一系列的输出。第二块模糊神经网络采用气体三比值法作为输入,产生一系列的输出。第三块模糊神经网络可采用直流电阻、绝缘电阻、吸收比、极化指数、变比、介质损耗tgδ、水分等电气试验测定值作为输入。第四块模糊神经网络可采用油位、油温度等测定值作为输入。输入模糊化后,送入BP神经网络,经处理后,产生一系列结果,送入ART2模型中,再经处理后产生诊断结果,输出量有:正常,绝缘老化,绕组匝间短路,分接头接触不良,绝缘击穿,严重受潮,油中局部放电,有载分接开关箱漏油,断线,过热性故障,铁心短路,固体绝缘电弧分解等。
混合神经网络中BP神经网络为如下图所示三层结构:本文引用地址:https://www.eepw.com.cn/article/150915.htm
BP1为3层,其输入量为7个第1到3输入量为H2,总烃及C2H2测定量,第4到7输入量为C2H2,H2,CH4与C2H4在总烃中所占的比例,隐含层20个,输出量为6个,分别表示一般过热(>500℃),局部放电,火花放电,电弧放电与过热兼电弧放电;BP2也为3层,其输入量为3个,隐含层12个,输出量为9个,其输入输出含义见表2。BP1、BP2两类在现场已有应用,因此,其输入、输出及隐含层神经元数量是由经验给出的;由于现场条件的限制,BP3、BP4输入量、输出量的个数及隐含层数由根据现场实际所能提供的测定数据来确定,仿真中采用介质损耗tgδ、直流电阻、吸收比、油位、水分的测量值作为输入,网络也采用三层结构,其输入层、隐含层、输出层分别为3、10、6和2、8、5。BP神经网络采用文献5所述的学习算法。由于BP算法存在收敛速度慢,学习精度低等问题,本文采用加动量因子,及不等权、半随机初始解等方法加以解决,以加快收敛速度。
ART2神经网络的结构如3图所示【9】:
自适应共振理论ART2具有快速的学习算法,且无需大量样本,在故障在线识别领域有很大的应用潜力。图3是典型的单ART2神经网络结构,适用于模拟向量输入。网络可分为注意子系统和调整子系统两部分,前者完成输入向量的相似度匹配及竞争选择,后者检验输入模式与长期记忆模式之间的相似度是否达到满意的程度,并根据检验结果作出相应处理,成功或重置。提取的特征向量Ii输入F1层(比较层)。在F1层通过向量归一化和非线性变换经迭代得到稳定的中层模式u,并经p送入F2层(识别层),由F2层经竞争选择激活F2层候选模式(本文中对应故障类型),得到系统的短期记忆。F2层的输出经长期记忆加权后反馈回F1层,反馈信息与u一起送入调整子系统,检验系统长期记忆模式与输入模式的相似程度,若通过相似程度检验,则可确定输入模式属于F2层的候选模式,并按快速学习算法,一步完成权值的学习;若未通过检验,则强迫F2层重置并选择下一输出节点,若所有的输出节点都不能通过匹配检验,则增加一个新的输出节点即另一新类。
在应用ART2时必须注意的是ρ(相似测度警戒限,为0到1之间的正数)的选择。ρ值决定了网络对输入模式进行分类的间隔大小,直接影响分类性能。若ρ选得太小,分类粗糙,不能把不同故障类型区分开;若ρ选得太大,分类又太纫,则同一故障类型可能被划分到不同输出模式中,引起错分。ρ的选样没有一定的规则,需要在具体应用中调整。本文中ρ取0.5即可达到较满意的分类效果。ART2网络参考了文献10所述的学习算法。
变压器故障诊断过程属于一个非平稳、非线性的随机过程。在学习阶段,通过对足够量的样本训练,逐层调整接点权重和阈值,直至误差达到精度要求。在工作期间,投入不同的测试样本,进行故障诊断模式识别,最终实时判别故障类型和故障可能发生的位置。
4.知识处理
4.1特征气体的模糊知识表示
评论