博客专栏

EEPW首页 > 博客 > 雪崩二极管的基础知识解析

雪崩二极管的基础知识解析

发布人:云汉芯城 时间:2019-04-28 来源:工程师 发布文章

雪崩二极管是利用半导体结构中载流子的碰撞电离和渡越时间两种物理效应而产生负阻的固体微波器件。

PN结有单向导电性,正向电阻小,反向电阻很大。

当反向电压增大到一定数值时,反向电流突然增加。就是反向电击穿。它分雪崩击穿和齐纳击穿(隧道击穿)。

雪崩击穿是PN结反向电压增大到一数值时,载流子倍增就像雪崩一样,增加得多而快。

利用这个特性制作的二极管就是雪崩二极管

雪崩击穿是在电场作用下,载流子能量增大,不断与晶体原子相碰,使共价键中的电子激发形成自由电子-空穴对。新产生的载流子又通过碰撞产生自由电子-空穴对,这就是倍增效应。1生2,2生4,像雪崩一样增加载流子。

齐纳击穿完全不同,在高的反向电压下,PN结中存在强电场,它能够直接破坏共价键将束缚电子分离来形成电子-空穴对,形成大的反向电流。齐纳击穿需要的电场强度很大!只有在杂质浓度特别大的PN结才做得到。(杂质大电荷密度就大)

一般的二极管掺杂浓度没这么高,它们的电击穿都是雪崩击穿。齐纳击穿大多出现在特殊的二极管中,就是稳压二极管

它是在外加电压作用下可以产生高频振荡的晶体管。产生高频振荡的工作原理是:利用雪崩击穿对晶体注入载流子,因载流子渡越晶片需要一定的时间,所以其电流滞后于电压,出现延迟时间,若适当地控制渡越时间,那么,在电流和电压关系上就会出现负阻效应,从而产生高频振荡。它常被应用于微波领域的振荡电路中。

工作原理

在材料掺杂浓度较低的PN结中,当PN结反向电压增加时,空间电荷区中的电场随着增强。这样,通过空间电荷区的电子和空穴,就会在电场作用下获得的能量增大,在晶体中运动的电子和空穴将不断地与晶体原子又发生碰撞,当电子和空穴的能量足够大时,通过这样的碰撞的可使共价键中的电子激发形成自由电子–空穴对。新产生的电子和空穴也向相反的方向运动,重新获得能量,又可通过碰撞,再产生电子–空穴对,这就是载流子的倍增效应。当反向电压增大到某一数值后,载流子的倍增情况就像在陡峻的积雪山坡上发生雪崩一样,载流子增加得多而快,这样,反向电流剧增, PN结就发生雪崩击穿。利用该特点可制作高反压二极管。下图是雪崩击穿的示意图。

雪崩二极管是一种负阻器件,特点是输出功率大,但噪声也很大。主要噪声来自于雪崩噪声,是由于雪崩倍增过程中产生电子和空穴和无规则性所引起的,其性质和散弹噪声类似。雪崩噪声是雪崩二极管振荡器的噪声远高于其它振荡器的主要原因。

雪崩二极管如何帮助防止过电压

当IGBT在高性能应用中高速接通和断开时,总会发生过压。例如,当关闭负载电流电路时,集电极 - 发射极电压突然上升,达到非常高的峰值。由开关引起的过电压会严重损坏甚至破坏开关晶体管。

常见的过电压保护方法是“有源钳位(active clamping)”。在这种情况下,雪崩二极管用作直接反馈。如果关断导致电感负载过压峰值,则由雪崩二极管传导至IGBT栅极,并且IGBT重新接通。

上图显示了基本原理:当电压上升时,二极管被阻断(A)。在耗尽区中,一个自由电子触发雪崩的瞬间,电压突然下降到低于30V的击穿电压电平,雪崩二极管立刻击穿(B)。在重新启动之前,有时只能保持雪崩电流在短时间内稳定,并且电压再次上升(C)。击穿延迟(D)即两次击穿事件之间的时间,是不能预测的。

建议将具有改善噪声性能的雪崩二极管用于有源钳位过压保护,因为它们能够:

˙ 在快速上升的反向电压下,更快击穿

˙ 在低电流(低于~1mA)时具有更稳定击穿电压,因此:

˙ 延长其它器件的寿命,例如 IGBT或Mosfet,结果:

˙ 为变频器或电机控制器等应用节省成本,因为组件较少需要更换。

雪崩二极管的噪声是如何产生的?

雪崩二极管的噪声来自雪崩的不断接通和断开,即电压峰值的不断产生及其突然击穿(见图)。触发雪崩击穿有两个先决条件:

1. 存在足够的击穿电压以产生用于碰撞电离的临界电场强度。

2. 存在自由电子,因而形成漏电流。

例如,1.6pA = 1.6 x 10-12A漏电流等于通过阻挡层的电子流速为每秒107电子,这意味着在统计上每100ns只能触发一次雪崩。然而,由于不是每个电子都会触发雪崩,实际上触发时间会更长。因此,触发雪崩击穿的概率与泄漏电流成比例。换句话说:漏电流越大,触发雪崩击穿的概率越高或击穿延迟时间越短(图中:D)。

在两个冲击漏电流电子之间,二极管处的反向电压可以显著上升到高于击穿电压电平。只有当下一个冲击电子触发雪崩时,二极管的电压才会突然下降到击穿电压水平。

如果电压源提供足够的电流,例如 1mA,雪崩击穿可以通过连续的碰撞电离保持自身运行,从而产生稳定的雪崩电流。

但是,如果源电流太低,例如100μA,低于击穿电压电平的雪崩电压突然下降,使得二极管放电,将导致雪崩击穿立即再次停止。这时,需要一定的时间来使二极管和线电容充电,使低源电流达到所需的电压电平,然后下一个电子才能触发新的雪崩。这种雪崩的不断接通和断开导致雪崩二极管击穿的典型噪声。

二极管噪声性能的差异在图中也可见:图中显示了两个Z二极管(齐纳二极管)的击穿电压范围,在100μA的反向电流(IR)下测得的击穿电压为30V。其中一个二极管基于标准技术,使用极低的漏电流,另一个则采用“低噪声技术”。具有“低噪声技术”的齐纳二极管具有更稳健的电压特性,优于仅能在短时间内保持恒定雪崩电流的另一个二极管(C)。

威世提供采用“低噪声技术”的Z二极管,这些新一代产品包括SMF、BZD27、BZG 03、BZG04、 BZG05、PLZ 和 VTVS系列,由于适度增加漏电流(IR~10nA)而明显增加了触发雪崩击穿的可能性,从而降低了噪声,并为用户提供了在低电流(低于~1mA)时更稳定的击穿电压以及快速上升反向电压的更快击穿。

二极管噪声的更进一步影响因素

漏电流随温度增加而呈指数上升,即噪声随温度升高而降低;光还可以释放二极管耗尽区中的自由电子,从而降低噪声水平。这意味着:四周环境越暗越冷,噪音水平越高。

(免责声明:素材来自网络,由云汉芯城小编搜集网络资料编辑整理,如有问题请联系处理!)

*博客内容为网友个人发布,仅代表博主个人观点,如有侵权请联系工作人员删除。

DIY机械键盘相关社区:机械键盘DIY




关键词:

相关推荐

技术专区

关闭