新闻中心

EEPW首页 > 测试测量 > 设计应用 > 探头在捕获高速信号上的技术进步

探头在捕获高速信号上的技术进步

作者:时间:2012-03-26来源:网络收藏

取决于负载,延迟或许不是频率常数。这意味着信号由不同的沿速率(不同频率成份)会被延迟不同的数量。当和输入从容性变到感性谐振时,延迟也变化。甚至试图减少LC谐振的幅度影响,也会使信号的时间延迟失真。唯一真正的解决方案是移到被测频率之上的谐振频率。

频域中,时间偏移表现为群时延。定义为相位改变除以频率的改变。理想的传输线有恒定的群时延(意味着延迟独立于频率)。同样,容性负载也有恒定的群时延。更复杂的负载电路表现出随信号变化的频率成份而改变的延迟。这产生了信号中的确定性抖动,通过替换信号的连接而简化。

示例探头的群时延如Figure 7所示。垂直单位是ns。注意,类似于幅度损失,延迟也是被测电路阻抗的函数。此外,如果有人预计探头在信号上产生的影响,特定的信号属性将包括在仿真中。



决定信号的探头负载效应是很难的。最简单的方法是通过可以探测信号的夹具连接信号(或者典型信号)到测量仪器的输入。这样的夹具如下图(Figure 8)所示。这是一个50欧姆微带传输线,提供到仪器的极低失真连接。使用这个夹具,可以测量信号在探头连接或不连接情况下检测信号形状的任何变化或由负载效应导致的时序。

我们可以通过安装在力科WaveMaster示波器输入的夹具展示这个方法,并显示这个信号在探头连接或不连接夹具时的迹线。触摸探头只有极少的影响。Figure 9 展示Probe A通过信号放置的负载产生的结果。

为了确定负载引起的延迟效应,用户必须在独立的信号上触发示波器以便触发点不随着探头而偏移。示波器设置成非负载信号(储存在内存M1中)幅度和延迟和负载信号(显示在通道1中)。之前对于在信号形状上探头负载效应测试,没有大多数可预期的效应。好的探头不会改变上升沿的形状或相对于触发点的边沿时序。这里,斜的信号边沿被衰减,时间延迟了7ps。因为我们看到对于这样的一个探头群时延不是常数,这个值随着频率成份(上升沿)的改变而改变。

新的WaveLinks探头不通过同一个测试信号,测量结果如Figure 10 所示。由于探头负载(1%)信号幅度有轻微的减少,但主要的信号边沿完全没有失真。探头阻抗产生的延迟是2ps,不会随着信号频率改变。

这个同样的夹具可以用于频域测量。通过测试夹具的信号插损可被测量,由探头负载增加的插损,还有群时延都可被显示。

探头可以引起被测信号幅度和时间上的显著变化。越低的探头,这些改变越厉害,被测电路的特定属性越依赖于这些改变。这些改变,尤其是时间偏斜会被显著损害,因为通过功能系统传播导致系统中其他点的失效测量。一个探头输入阻抗的准确模型要求完全评估这些在用探头时可以看到的效应。

差分探头具有固有的较低负载,现在的问题是增加到非常高的带宽差分放大器(这里是7.5GHz)已被解决,这么一个探头的所有的高频测量是最好的。WaveLink系列探头在这些任何已有的高频探头中具有最低的负载,提供了测试信号的最低失真。


上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭