新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 小波变换和motion信号处理:第二篇

小波变换和motion信号处理:第二篇

作者:时间:2014-05-22来源:网络收藏

说到这里,可能你对scaling function以及多解析度分析已经比较理解了。但是,我们还没有涉及到它们在中的具体应用,也就是还没有回答刚才那个问题:凭空插了一个scaling function到小波basis组合中干嘛。也就是说,我们希望理解scaling function是怎么和小波函数结合的呢,多解析度能给带来什么样的好处呢。这其实就是是中的核心知识。理解了这个,后面的小波变换就是纯数学计算了。

本文引用地址:http://www.eepw.com.cn/article/247254.htm

好,我们已经知道,对于子空间V0,basis是scaling function:

 

 

对应的小波函数是:

 

 

然后子空间V1的basis集合是这俩哥们:

 

 

看出什么规律了么?多看几次这三个图,你会惊讶地发现,在V0中的scaling function和wavelet function的组合,其实就是V1中的basis!继续这样推导,V1本来的的basis是:

 

 

然后V1中对应的wavelet function是

 

 

他们的组合,本质上也就是V2的basis(参考图2)。你继续推导下去,会得到同样的结论:在scale j的wavelet function,可以被用来将Vj的basis扩展到V(j+1)中去!这是一个非常非常关键的性质,因为这代表着,对任何一个子空间Vj,我们现在有两种方法去得到它的orthonormal basis:

1. 一种就是它本来的basis

 

 

,对任意k。

2. 第二种就是它上一个子空间的basis

 

 

,对任意k,以及上一级子空间的wavelet function

 

 

,对任意k。

第二种选择能给我们带来额外的好处,那就是我们可以循环不断地用上一级子空间的scaling function以及wavelet function的组合来作为当前子空间的基。换句话说,如果针对V3这个子空间,它实际上就有四种不同的,但是等价的orthonormal basis:

1. 本级(V3)的scaling function basis set

 

 

2. 上一级(V2)的scaling function + wavelet function;

 

 

3 . 上上一级(V1)的scaling function + 上上一级(V1)的wavelet function + 上一级(V2)的wavelet function;

 

 

4. 上上上一级(V0)的scaling function + 上上上一级(V0)的wavelet function + 上上一级(V1)的wavelet function + 上一级(V2)的wavelet function

 

 

好,看看最后一种选取方式,有没有感到眼熟?对了,它就是我们之前提到的“针对此信号space的哈尔小波basis组合”,参见图1。现在我们知道了,这个scaling function不是凭空插进去的,而是通过不断的嵌套迭代出来的:)

那为什么我们最后选定的是这种选取方式呢?实际上,刚才介绍的这个性质已经告诉我们,对于任何的scale j0,我们都可以给我们的signal space找到一组orthonormal basis,这个basis是通过组合scale j0上的scaling function以及所有在scale j,j>j0上的wavelets得到的。这样,基于这个orthonormal basis,所有信号空间中的信号都可以写成组成这个basis的functions的线性组合:

 

 

对应的系数的计算和平常一样:

 

 

这,就是最终的,也是最核心的,小波变换形式。不管是信号压缩,滤波,还是别的方式处理,只要是用小波变换,都逃不出这个基础流程:

1. 选取合适的wavelet function和scaling function,从已有的信号中,反算出系数c和d。

2. 对系数做对应处理

3. 从处理后的系数中重新构建信号。

这里的系数处理是区别你的应用的重点。比如图像或者视频压缩,就希望选取能将能量聚集到很小一部分系数中的小波,然后抛弃那些能量很小的小波系数,只保留少数的这些大头系数,再反变换回去。这样的话,图像信号的能量并没有怎么丢失,图像体积却大大减小了。

还有一个没有解释的问题是,为什么要强调尺度函数和小波函数组成一个orthonormal basis呢?计算方便是一方面,还有一个原因是,如果他们满足这个性质,就满足瑞利能量定理,也就是说,信号的能量,可以完全用每个频域里面的展开部分的能量,也就是他们的展开系数表示:

 

 

到这里,我们对小波变换的形式就讲完了。虽然是用的最简单的哈尔小波为例子,但举一反三即可。我们着重介绍了多解析度分析以及它给小波变换带来的杀手锏:时域频域同时定位。结束之前,再多说几句小波变换的意义。我们拿刚才例子中V3子空间的第二种可选择的orthonormal basis作为例子:

 

 

左边这四个basis组成元素,也就是scaling functions,的系数,表征的是信号的local平均(想想它们和信号的内积形式),而右边的这四个basis组成元素,也就是wavelet functions,的系数则表征了在local平均中丢失的信号细节。得益于此,多解析度分析能够对信号在越来越宽的区域上取平均,等同于做低通滤波,而且,它还能保留因为平均而损失的信号细节,等同于做高通滤波!这样,我们终于可以解释了wavelet function和scaling function背后的物理意义了:wavelet function等同于对信号做高通滤波保留变化细节,而scaling function等同于对信号做低通滤波保留平滑的shape!

对小波变换的基础知识,我们就讲到这里。需要注意的是,这只是小波变换最基本最基本的知识,但也是最核心的知识。掌握了这些,代表你对小波变换的物理意义有了一定的了解。但对于小波变换本身的讲解,一本书都不一定能将讲透,还有很多的基础知识我都没有讲,比如如何构建自己的scaling function,选取合适的系数集h[k],并由此构建自己的wavelet functions。所以,如果有深入下去研究的同学,好好买一本书来看吧。而只是希望用小波变换来服务自己的应用的同学,个人觉得这些知识已经足够让你用来起步了。


上一页 1 2 3 下一页

关键词: 小波变换 motion

评论


相关推荐

技术专区

关闭