TFT-LCD液晶显示器的工作原理
如同我前面所提到的, 液晶显示器泛指一大堆利用液晶所制作出来的显示器. 而今日对液晶显示器这个名称, 大多是指使用于笔记型计算机, 或是桌上型计算机应用方面的显示器. 也就是薄膜晶体管液晶显示器. 其英文名称为Thin-film transistor liquid crystal display, 简称之TFT-LCD. 从它的英文名称中我们可以知道, 这一种显示器它的构成主要有两个特征, 一个是薄膜晶体管, 另一个就是液晶本身. 我们先谈谈液晶本身.
液晶(LC, liquid crystal)的分类
我们一般都认为物质像水一样都有三态, 分别是固态液态跟气态. 其实物质的三态是针对水而言, 对于不同的物质, 可能有其它不同的状态存在. 以我们要谈到的液晶态而言, 它是介于固体跟液体之间的一种状态, 其实这种状态仅是材料的一种相变化的过程(请见图1), 只要材料具有上述的过程, 即在固态及液态间有此一状态存在, 物理学家便称之为液态晶体.
![]() |
这种液态晶体的首次发现, 距今已经度过一百多个年头了. 在公元1888年, 被奥地利的植物学家Friedrich Reinitzer所发现, 其在观察从植物中分离精制出的安息香酸胆固醇(cholesteryl benzoate) 的融解行为时发现, 此化合物加热至145.5度℃时, 固体会熔化,呈现一种介于固相和液相间之半熔融流动白浊状液体. 这种状况会一直维持温度升高到178.5度℃, 才形成清澈的等方性液态(isotropic liquid). 隔年, 在1889年, 研究相转移及热力学平衡的德国物理学家O.Lehmann, 对此化合物作更详细的分析. 他在偏光显微镜下发现, 此黏稠之半流动性白浊液体化合物,具有异方性结晶所特有的双折射率(birefringence)之光学性质, 即光学异相性(optical anisotropic). 故将这种似晶体的液体命名为液晶. 此后, 科学家将此一新发现的性质, 称为物质的第四态-液晶(liquid crystal). 它在某一特定温度的范围内, 会具有同时液体及固体的特性.
一般以水而言, 固体中的晶格因为加热, 开始吸热而破坏晶格, 当温度超过熔点时便会溶解变成液体. 而热致型液晶则不一样(请见图2), 当其固态受热后, 并不会直接变成液态, 会先溶解形成液晶态. 当您持续加热时, 才会再溶解成液态(等方性液态). 这就是所谓二次溶解的现象. 而液晶态顾名思义, 它会有固态的晶格, 及液态的流动性. 当液态晶体刚发现时, 因为种类很多, 所以不同研究领域的人对液晶会有不同的分类方法. 在1922年由G. Friedel利用偏光显微镜所观察到的结果, 将液晶大致分为Nematic Smectic及Cholesteric三类. 但是如果是依分子排列的有序性来分(请见图3), 则可以分成以下四类:
![]() |
![]() |
其结构是由液晶棒状分子聚集一起, 形成一层一层的结构. 其每一层的分子的长轴方向相互平行. 且此长轴的方向对于每一层平面是垂直或有一倾斜角. 由于其结构非常近似于晶体, 所以又称做近晶相. 其秩序参数S(order parameter)趋近于1. 在层状型液晶层与层间的键结会因为温度而断裂 ,所以层与层间较易滑动. 但是每一层内的分子键结较强, 所以不易被打断. 因此就单层来看, 其排列不仅有序且黏性较大. 如果我们利用巨观的现象来描述液晶的物理特性的话, 我们可以把一群区域性液晶分子的平均指向定为指向矢(director), 这就是这一群区域性的液晶分子平均方向. 而以层状液晶来说, 由于其液晶分子会形成层状的结构, 因此又可就其指向矢的不同再分类出不同的层状液晶. 当其液晶分子的长轴都是垂直站立的话, 就称之为"Sematic A phase". 如果液晶分子的长轴站立方向有某种的倾斜(tilt)角度,就称之为"Sematic C phase". 以A,C等字母来命名, 这是依照发现的先后顺序来称呼, 依此类推, 应该会存在有一个"Sematic B phase"才是. 不过后来发觉B phase其实是C phase的一种变形而已, 原因是C phase如果带chiral的结构就是B phase. 也就是说Chiral sematic C phase就是Sematic B phase(请见图4). 而其结构中的一层一层液晶分子, 除了每一层的液晶分子都具有倾斜角度之外, 一层一层之间的倾斜角度还会形成像螺旋的结构.
![]() |
Nematic这个字是希腊字, 代表的意思与英文的thread是一样的. 主要是因为用肉眼观察这种液晶时, 看起来会有像丝线一般的图样. 这种液晶分子在空间上具有一维的规则性排列, 所有棒状液晶分子长轴会选择某一特定方向(也就是指向矢)作为主轴并相互平行排列. 而且不像层状液晶一样具有分层结构. 与层列型液晶比较其排列比较无秩序, 也就是其秩序参数S较层状型液晶较小. 另外其黏度较小, 所以较易流动(它的流动性主要来自对于分子长轴方向较易自由运动)。线状液晶就是现在的TFT液晶显示器常用的TN(Twisted nematic)型液晶.
3.胆固醇液晶(cholesteric) :
这个名字的来源,是因为它们大部份是由胆固醇的衍生物所生成的. 但有些没有胆固醇结构的液晶也会具有此液晶相. 这种液晶如图5所示, 如果把它的一层一层分开来看, 会很像线状液晶. 但是在Z轴方向来看, 会发现它的指向矢会随着一层一层的不同而像螺旋状一样分布, 而当其指向矢旋转360度所需的分子层厚度就称为pitch. 正因为它每一层跟线状液晶很像,所以也叫做Chiral nematic phase. 以胆固醇液晶而言, 与指向矢的垂直方向分布的液晶分子, 由于其指向矢的不同, 就会有不同的光学或是电学的差异, 也因此造就了不同的特性.
![]() |
![]() |
也称为柱状液晶, 以一个个的液晶来说, 它是长的像碟状(disk), 但是其排列就像是柱状(discoid).
如果我们是依分子量的高低来分的话则可以分成高分子液晶(polymer liquid crystal, 聚合许多液晶分子而成)与低分子液晶两种. 就此种分类来说 TFT液晶显示器是属于低分子液晶的应用. 倘若就液晶态的形成原因, 则可以分成因为温度形成液晶态的热致型液晶(thermotropic),与因为浓度而形成液晶态的溶致型液晶(lyotropic). 以之前所提过的分类来说, 层状液晶与线状液晶一般多为热致型的液晶, 是随着温度变化而形成液晶态. 而对于溶致型的液晶, 需要考虑分子溶于溶剂中的情形. 当浓度很低时, 分子便杂乱的分布于溶剂中而形成等方性的溶液, 不过当浓度升高大于某一临界浓度时, 由于分子已没有足够的空间来形成杂乱的分布, 部份分子开始聚集形成较规则的排列, 以减少空间的阻碍. 因此形成异方性(anisotropic)之溶液. 所以溶致型液晶的产生就是液晶分子在适当溶剂中 达到某一临界浓度时,便会形成液晶态. 溶致型的液晶有一个最好的例子,就是肥皂. 当肥皂泡在水中并不会立刻便成液态, 而其在水中泡久了之后, 所形成的乳白状物质, 就是它的液晶态.
LCD显示屏相关文章:lcd显示屏原理
led显示器相关文章:led显示器原理
lcd相关文章:lcd原理
评论