新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 开关电源原理与设计(连载50)

开关电源原理与设计(连载50)

作者:时间:2011-03-01来源:网络收藏

磁场强度H下降到零,但变压器铁芯中的磁通密度不能跟随磁场强度下降到零,而只能下降到某个磁通密度剩余值,这种现象称为变压器铁芯具有磁矫顽力,简称矫顽力,用Hc表示。变压器铁芯具有磁矫顽力,这是铁磁材料或磁性材料最基本的性质。同理,当第二个直流脉冲加到变压器初级线圈a、b两端时,变压器铁芯中的磁通密度B将按图2-2中新的磁化曲线2-3上升,磁通密度被磁场强度磁化到第二个最大值Bm2,使磁通密度产生一个增量ΔB,ΔB = Bm2-Br1 。

第二个直流脉冲结束以后,流过变压器初级线圈中的励磁电流下降到零,变压器初、次级线圈产生的反电动势,又会使磁通密度按另一条新的退磁化曲线3-4返回到第二个剩余磁通密度Br2处;当然,Br2同样也只是变压器铁芯被退磁时磁通密度变化过程中的又一个临时剩余值。

其余依次类推,第3、4个直流脉冲电压同样也会让磁通密度增加一个增量ΔB ,即:

ΔB = Bm3-Br2 = Bm4-Br3 = Bm1-0 (2-9)

(2-9)式中,ΔB为磁通密度增量;只要作用于开关变压器线圈上的脉冲电压的幅度U和脉冲宽度τ不变,则变压器铁芯片的磁化过程就会在磁通密度增量为常数(∆B = 常数)的条件下进行。

但在直流脉冲的幅度和宽度不变的情况下,磁通密度的增量ΔB不改变,并不意味着磁场强度的增量可以保证不变,这是磁强度度与磁场强度之间的一个重要区别。

经过n个直流脉冲电压之后,变压器铁芯中的最大磁通密度Bm和剩余磁通密度Br才能基本稳定在某个数值之上,即:脉冲序列的作用达到稳定状态后,磁化过程将沿原始曲线上某一固定局部磁滞回线n点重复;这时剩余磁通密度为Br n(Br n= Br),磁通密度变化无论磁场强度增长或降低,其ΔB值基本不变。显然,局部磁滞回线固定于什么位置,对某种材料来说只取决于∆B值的大小。如果∆B足够大,则局部磁滞回线的最低点位于最大局部磁滞回线的剩余磁通密度点Br点处。此时Br对应每个输入直流脉冲的起点,Bm对应每个直流脉冲的终点。

磁通密度达到最大值Bm后不再继续增加是可以理解的,因为,磁通密度和磁场强度既可以是势能也可以是位能,两者可以互相转换,它们与电容充放电的过程是很相似的。例如:当电源电压对电容充电时,电容两端的电压会上升;当电源断开的时候,电容就会对负载放电,其两端电压就会下降;当电容充电的电荷与放电的电荷完全相等的时候,电容两端电压纹波就会稳定在某个数值之上。

用∆H表示磁场强度增量,它在固定局部磁滞回线上磁通密度增量∆B相对应,即它们之间可用下面关系式表示:

ΔB = f(∆H) (2-10)

(2-10)式称为磁场强度增量∆H与磁通密度增量∆B的脉冲静态特性关系。在直流状态条件下,(2-10)式不成立。
磁场强度增量∆H和磁通密度增量∆B的对应关系还可以用下式表示:

μ△=ΔB/∆H—— 脉冲变压器 (2-11)

(2-11)式中,μ△ 称为脉冲静态磁化系数,或脉冲变压器的脉冲导磁率。由于脉冲导磁率的使用范围比较小,对于开关变压器我们同样也可以用平均导磁率μa的概念取而待之。即:

μa=ΔBa/∆Ha—— 开关变压器 (2-12)

(2-12)式中, μa为开关变压器的平均导磁率; ΔBa为开关变压器铁芯中的平均磁通密度增量; ∆Ha为开关变压器铁芯中的平均磁场强度增量。

脉冲导磁率μ△ 与平均导磁率μa 的区别在于:一般脉冲变压器输入脉冲电压的幅度以及宽度基本上都是固定的,并且是单极性脉冲,其磁滞回线的面积相对来说很小,因此,铁芯的脉冲导磁率μ△几乎可以看成是一个常数;而开关变压器输入脉冲电压的幅度以及宽度都不是固定的,其磁滞回线的面积相对来说变化比较大,铁芯导磁率的变化范围也很大,特别是双激式开关变压器,因此,只能用平均导磁率μa的概念来描述。

励磁电流或磁场强度对变压器铁芯进行磁化时也具有类似电容器充、放电的特点:当变压器初级线圈中的励磁电流产生的磁场强度对变压器铁芯进行磁化时,磁通密度就会增加,相当于对电容器充电;当变压器初级线圈中的励磁电流为零时,变压器初、次级线圈会产生反电动势,其感应产生的电流就会产生反向磁场对变压器铁芯进行退磁,使磁通密度下降,与充电电容器对负载放电的情况很类似。




关键词: 开关电源

评论


相关推荐

技术专区

关闭