新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 跟电源专家陶显芳学电源技术(二):漏感与分布电容对输出波形的影响(下)

跟电源专家陶显芳学电源技术(二):漏感与分布电容对输出波形的影响(下)

作者:时间:2012-12-16来源:网络收藏

  当开关管开始关断时,外电路给栅极加一负电压(或低电压),通过静电感应,开关管内耗尽层中的载流子(电子)在电场的作用下会重新进行分布,相当于外电路要向耗尽层抽离载流子,耗尽层中载流子的浓度将按指数规律减小,耗尽层的厚度也将随时间增大而变小,其结果是耗尽层的电阻将随时间由小变大。这个过程,与被充电时,流过的电流由大变小很相似;所以,当开关管刚导通的一瞬间,开关管可以等效成一个理想的开关与一个器并联,这个电容器就是漏极和源极之间的分布电容Cds。如图5是开关管关断时,反激式开关电源的工作原理图。

跟电源专家陶显芳学电源技术(二):漏感与分布电容对输出波形的影响(下)

  根据上面分析,栅极电容Cgs对开关管的导通影响比较大,容量越大,开关管的导通上升时间就越长。而漏极电容Cds对开关管的关断影响比较大,容量越大,开关管关断存储时间就越长。电容Cgs和Cds也称扩散电容,它们既具有电阻的性质,同时也具有电容充放电的特性,这种特性主要与耗尽层中载流子的浓度变化有关。

  当电源开关管为晶体管时,Cgs和Cds分别与Cbe和Cce对应,工作原理场效应管的工作原理基本相同或相似。不过基区参与导电的载流子的密度的增加或减少,不是靠静电感应的作用,而是靠基极电流的注入。

  由于开关管在导通或关断期间,其分布参数的性质和作用也在改变,因此,在图1~5中,要对分布电感Ls和分布电容Cs,以及Cgs和Cds组成的电流回路进行精确计算,难度是很大的。下面,我们将以很长的篇幅来对上面电路进行分析和计算。

  在图4中,分布电感Ls和分布电容Cs可以看成是一个串联振荡回路,当开关管Q1开始导通的时候,输入脉冲电压的上升率远远大于输入电压通过分布电感Ls对分布电容Cs充电电压的上升率,此时,串联振荡回路开始吸收能量,输入电压通过Lds和Ls对Cs进行充电,流过Ls和Cs的电流按正弦曲线增长;当开关管Q1完全导通以后,Lds的值等于0,此时,输入脉冲进入平顶阶段,相当于输入脉冲电压的上升率为0,由于,输入脉冲电压的上升率远远小于分布电感Ls与分布电容Cs进行充、放电时电压的上升率,因此,振荡回路开始释放能量,振荡回路会产生阻尼振荡。

  由于分布电感Ls和分布电容Cs的时间常数相对于励磁电感 比较小,所以分布电感Ls和分布电容Cs产生阻尼振荡的过程主要发生在开关管Q1导通和关断的一瞬间。当开关管Q1导通或关断后不久,阻尼振荡很快就会停止。当输入电压对分布电容Cs充满电后,输入电压就完全加到励磁电感 的两端。如果是反激式开关电源,流过励磁电感 的电流将随时间从0开始线性增加;如果是正激式开关电源,流过励磁电感 的电流将随时间按梯形波曲线增长。

  在开关管Q1导通期间,由于开关管的导通内阻非常小,分布电容Cds基本上是不起作用的。当开关管Q1由导通状态转换为关断时,开关管漏极和源极之间的分布电容Cds将被接入电路中,分布电感Ls和励磁电感 将同时产生反电动势,并分别对分布电容Cds和Cs进行充、放电,电容与电感在交替进行能量交换的过程中,将产生串、并联振荡。

  但由于励磁电感 的时间常数比Ls、Cs和Cds的时间常数大好多,因此,在产生振荡的过程中,主要由Ls、Cs和Cds三者产生作用。另外,在开关管开始关断期间,由于Cds实际上是一个阻抗由小到大,其阻抗变化过程类似于电容充电的可变电阻,它只吸收能量,而不会释放能量。因此,它在产生振荡的过程中,只对充电曲线的上升速率起影响,而对放电曲线的下降速率不起影响。

  图6是图4和图5电路中,当开关管导通时(图4),输入电压ui通过开关变压器Ls对分布电容Cs进行充电,使Ls与分布电容Cs产生冲击振荡时,分布电容Cs两端的电压波形;和当开关管关断时(图5),输入电压ui与开关变压器Ls和分布电容Cs、Cds产生充、放电时,电源开关管D、S极两端的波形。

  在图6中,图6-a是电源开关管Q1导通时,输入电压ui加于开关变压器初级线圈两端的电压波形;图6-b是分布电容Cs两端的电压波形;图6-c,是电源开关管Q1漏极D与源极S之间的电压波形。

  在t0时刻,电源开关管Q1开始导通,输入电压ui加于开关变压器两端,输入电压ui首先通过分布电感Ls对分布电容Cs充电,此时,由于输入电压ui的上升率大于电流通过分布电感Ls对分布电容Cs进行充电的电压上升率,所以,分布电感和分布电容都从输入电压吸收能量。输入电压ui在对分布电感Ls和分布电容Cs进行充电过程中,分布电容Cs两端的电压是按正弦曲线上升的;而放电时,其两端的电压则按余弦曲线下降。

跟电源专家陶显芳学电源技术(二):漏感与分布电容对输出波形的影响(下)

  到t1时刻,流过Ls的电流达到最大值,同时分布电容Cs两端的电压与输入电压ui相等(或与变压器初级线圈的正激输出半波平均值Upa相等),此时输入电压ui的上升率为0,输入电压ui的上升率小于分布电感Ls对分布电容Cs充电的电压uc上升率,所以,分布电感Ls开始释放能量继续对分布电容Cs进行充电。此时,Ls在释放能量,而输入电压ui和分布电容Cs都在吸收能量,分布电容Cs都两端的电压uc继续按正弦曲线上升。

  到t2时刻,流过Ls的电流等于0(储存于Ls中的能量被释放完毕),分布电感产生的反电动势对分布电容Cs进行充电结束,此时Cs两端的电压也达到最大值,然后Cs开始按余弦曲线对Ls和输入电压ui进行放电,流过Ls的电流开始反向,Ls开始反向储存磁能量。

  到t3时刻,Cs两端的电压又与输入电压ui相等,电容停止放电,此时,Ls储存的磁能量将转化成反电动势es给电容Cs进行反向充电,使Cs两端的电压低于输入电压ui。

  到t4时刻,流过Ls的反向电流等于0,Cs两端的电压达到最低值,然后输入电压又开始通过Ls对Cs进行充电,至此,分布电感Ls与分布电容Cs第一个充放电周期结束。

  到t4时刻之后,输入电压ui对分布电感Ls和分布电容Cs进行充电的过程,以及分布电感Ls和分布电容Cs互相进行充电的过程,与t0~t4时刻基本相同。但由于在此期间,输入电压的上升率等于0,输入电压不再向分布电感Ls和分布电容Cs提供能量,因此,分布电感Ls与分布电容Cs产生自由振荡的幅度是随着时间衰减的,其衰减速率与等效电阻大小有关。

  到t10时刻,分布电感Ls与分布电容Cs产生的阻尼自由振荡的幅度被衰减到差不多等于0,此时,分布电容Cs两端的电压等于变压器初级线圈的正激输出半波平均值Upa。关于半波平均值Upa和Upa-的计算方法及定义,请参考第一章的(1-70)和(1-71)式及说明。

  在图6-b中,Upa为变压器初级线圈正激输出电压的半波平均值,此值与输入电压相等;Upa-为变压器初级线圈反激输出电压的半波平均值,此值与占空比相关;当占空比等于0.5时,Upa-与输入电压在数值上相等,但符号相反。

  到t11时刻,电源开关管Q1开始关断,由于流过分布电感Ls和励磁电感 的电流通路突然被切断,其必然会产生反电动势 和 ,此二反电动势将与输入电压ui一起串联对分布电容Cs和Cds进行充电。但由于Cs两端的电压与 电压基本相等,因此,对分布电容Cds进行充电的电压正好是输入电压ui与反电动势电压 和 三者之和。

  到t12时刻,电源开关管Q1已经完全关断,但二反电动势 和 与输入电压ui还继续对分布电容Cs和Cds进行充电,不过,此时Cds的容量已经变得非常小,因为它表示开关管内部的扩散电容,属于电阻性质,当开关管完全关断之后,阻值为无限大。

  直到t13时刻,分布电感Ls储存的磁能量基本被释放完,二反电动势 和 才停止对分布电容Cs和Cds继续进行充电;此时,分布电容Cs和分布电容Cds的两端电压均达到了最大值,即,加到电源开关管Q1漏极上的电压达到最大值;而后,分布电容Cs又对原充电回路进行放电,并产生自由振荡,但由于电源开关管Q1关断后阻抗为无效大,其放电回路只能通过等效R和励磁电感 进行,所以振幅很快就衰减到0。图3-c为电源开关管D、S两端的波形。

  在图6-c中,Uda为开关管Q1关断期间,D、S两极之间电压的半波平均值,Uda等于输入电压ui(ui=U)与变压器初级线圈产生反激输出电压的半波平均值Upa-之和;Udp为开关管关断期间D、S两极之间电压的峰值。Udp和Uda的值均与占空比有关,当占空比等于0.5时,Uda约等于输入电压ui(ui=U)的2倍,而Udp则大于输入电压的2倍,并且Udp的值还与漏感Ls的值大小有

电容的相关文章:电容屏和电阻屏的区别



上一页 1 2 下一页

关键词: 漏感 电容 输出波形

评论


相关推荐

技术专区

关闭