新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > MOS芯片的ESD保护电路设计

MOS芯片的ESD保护电路设计

作者:时间:2013-01-22来源:网络收藏

  随着CMOS集成电路产业的高速发展,越来越多的C应用在各种电子产品中,但在电子产品系统的设计过程中,随着CMOS工艺尺寸越求越小,单位面积上集成的晶体管越来越多,极大地降低了芯片的成本,提高了芯片的运算速度。

  但是,随着工艺的进步和尺寸的减小,静电释放(ESD),Elecyro Static Discharge)问题变得日益严峻。据统计,在集成中大约40%的失效电路是ESD问题造成的。

  MOS晶体管是绝缘栅器件,栅极通过薄氧化层和其他电极之间绝缘。如果栅氧化层有较大的电压,会造成氧化层击穿,使器件永久破坏。

  随着器件尺寸减少,栅氧化层不断减薄,氧化层能承受的电压也不断下降,引起氧化层本征击穿的电场强度约为1 X 107V/cm。如栅氧化层厚度是50 nm 则可承受的最大电压约50 V,当栅氧化层厚度减少到5 nm,则所能承受的最大电压约为5 V。因此外界的噪声电压容易引起栅击穿。

  特别是外界各种杂散电荷会在栅极上积累,由于MOS 晶体管的栅电容很小,只要少量的电荷就能形成很大的等效栅压,引起器件和电路失效,这就是ESD问题。例如,人体所带的静电荷可产生高达几kV的电压,在80%的湿度情况下,人走过化纤地毯可能产生1.5 kV静电压。ESD对CMOS集成电路的损伤,不仅会引起MOS器件栅击穿,还可能诱发电路内部发生闩锁效畸应。

  另外,静电释放产生的瞬时大电流可能造成芯片局部发热,损害器件和电路。在一般的条件下,ESD不会导致器件即时失效,它往往潜伏在集成电路器件中,这种存在有潜在缺陷的器件在使用时容易失效。

  特别是在深亚微米CMOS工艺中,由于溥栅氧化层的击穿电压较低,必须加入有效的在片电路以箝位加到内部电路栅氧化层上的过充电压。

  1 ESD放电模式与设计方案

电路的输入或输出端与电源和地之间的ESD应力有4种模式

  在集成电路中和外界相连的输入、输出端子比内部器什更容易受到ESD损伤。一般电路的输入或输出端与电源和地之间的ESD应力有4种模式:

  (1)某一输入(或输出)端对地的正脉冲电压(PS模式):VSS接地,ESD正电压加到该输入输出端,对VSS放电,VDD与其他管脚悬空。

  (2)某一输入(或输出)端对地的负脉冲电压(NS模式):VSS接地,ESD负电压加到该输入输出端,对VSS放电,VDD与其他管脚脚悬空。

  (3)某一个输入或输出端相对VDD端的正脉冲电压(PD模式):VDD接地,ESD正电压加到该输入输出端,对VDD放电,VSS与其他管脚悬空。

  (4)某一个输入或输出端相对VDD端的负脉冲电压(ND模式):VDD接地,ESD负电压加在该输入输出端,对VDD放电,VSS与其他管脚悬空。

  防止集成电路芯片输入、输出端受到ESD应力损伤的方法是在芯片的输入和输出端增加电路。保护电路的作用主要有两方面:一是提供ESD电流的释放通路;二是电压钳位,防止过大的电压加到MOS器件上。

  对CMOS集成电路连接到压点的输入端常采用双二极管保护电镀,图2所示为常见的电路的结构:双二极管保护电路。

  二极管D1是和PMOS源、漏区同时形成的,是p+n-结构,二极管D2是和NMOS源、漏区同时形成的,是n+p-结构。当压点相对地出现负脉冲应力,则二极管D2导通,导通的二极管和电阻形成ESD电流的泄放通路。

  当压点相对地出现正脉冲应力,使二极管D2击穿,只要二极管D2击穿电压低于栅氧化层的击穿电压,就可以起到保护作用。类似的,当压点相对电源出现正脉冲或负脉冲应力,二极管D1起保护作用,提供静电荷的泄放通路。

  这两个二极管把加到输入级MOS晶体管栅极的电压范围如式(1)所示:-0.7

  假设二极管的正向导通电压是0.7 V。电阻的作用是限制流过二极管的电流。由于ESD应力电压都是短暂的脉冲信号,只要电流不是非常大,二极管不会被烧坏,可以持续起保护作用。
图2中使用二极管作为I/O端的ESD保护电路,主要提供PD和NS模式下的电流泄放通路,但对于ND模式和PS模式,二极管处于反偏状态,反偏箝位电压过高,电流泄放能力较弱,导通电阻较高,使箝位能力不够,且产生的热量较大。

  图3中电路主要用于双极工艺,采用一个基极接VDD地PNP三极管和一个基极接地的NPN三极管共同构成ESD保护电路。采用这种保护电路,相对于二极管,在ND和PS模式下,可以工作在Snapback状态,具有较强的电流泄放能力和较低的维持电压。

  2 ESD保护电路

  对深亚微米CMOS集成电路,栅氧化层的击穿电压很小,常规二极管的击穿电压较大,不能起到很好的保护作用。因此可以增加离子注入提高二极管的衬底浓度,形成p+n+和n+p+结构来降低二极管的击穿电压。

  考虑到准备流片的多功能数字芯片要采用CSMC2P2M 0.6μm标准的COMS工艺,在设计中采用了如图4所示的ESD保护电路,用一个栅接地的NMOS管和一个栅接VDD的PMOS管共同构成输入ESD保护电路。

  另外,由于设计的ESD保护电路的MOS官尺寸大,所以在版图上画成多个插指,同时由于保护电路的MOS管尺寸较大,其漏源区pn结又可以起到二极管保护作用。图4所示为设计采用的ESD保护电路的原理图和版图。

图5所示为一款多功能数字芯片的版图照片和封装示意图,表1为管脚对应图

  在多功能数字芯片的设计中,在输入端使用了设计的ESD保护电路,另外,由于所设计的多功能数字芯片,在输出端设计了尺寸较大的MOS管构成的反相器来提高芯片的驱动能力,这些MOS管的漏区和衬底形成的pn结就相当于一个大面积的二极管,可以起到ESD保护作用。

  因此,一般可不用增加ESD保护器件,但由于需要在芯片流片后首先进行在片测试,所以在芯片的输出端加上了与输入端同样的ESD保护电路。

  3 ESD保护电路在流片后的测试情况

  图6所示为流片后的多功能数字芯片的在片测试波形,由测试波形可以看出,ESD保护电路对多功能数字芯片起到保护作用。

  4 结束语

  系统介绍了ESD保护电路;分析了不同的传统ESD保护电路的设计原理和优缺点。在此基础上,基于CSMC 2P2M 0.6μm标准的COMS工艺,进行ESD保护电路的版图设计和验证,并在一款多功能数字芯片上应用,该芯片参与了MPW计划进行流片。测试结果显示该ESD保护电路能直接应用到各种集成电路芯片中。

pic相关文章:pic是什么


电流传感器相关文章:电流传感器原理


评论


相关推荐

技术专区

关闭