新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 在高温超导滤波器后级的低温低噪声放大器的设计和调试方法

在高温超导滤波器后级的低温低噪声放大器的设计和调试方法

作者:时间:2013-05-27来源:网络收藏
随着超导材料应用的发展,采用高温超导材料制备的滤波器表现出前所未有的高性能. 高温超导滤波器与低温低噪声放大器(LNA) 组成的射频接收机前端具有广阔的应用前景[1]。在国内,自行研制的超导接收机前端已经在移动通讯基站中试运行,并获得良好效果。超导接收机前端是由高温超导滤波器、LNA、制冷机、真空腔及控制电路组成,如图1所示。由于LNA工作在和超导滤波器相同的低温环境下,放大器电路的热噪声相当低。在晶体管选取方面,HEMT(高电子迁移率场效应晶体管)很低的噪声和良好低温性能非常符合要求。由于可获取商业用晶体管的S参数仅限于常温至-55oC, 对制备低温70K下工作的放大器带来一定的问题。

本文选用atf-54143型晶体管,采用常温下晶体管的S参数进行设计,并主要采用集总元件实现电路匹配。详细分析了如何设计匹配电路来满足放大器各项指标要求,并提出了低温环境下的调试方法。

在高温超导滤波器后级的低温低噪声放大器的设计和调试方法

图1
1 放大器设计

将放大器电路按图2作简化,由于1.9GHz-2GHz属于L波段,选择集总元件作匹配电路可以有效减小电路尺寸。设计方法同常温下设计低噪声放大器的方法一致,通过微波仿真软件ADS帮助计算,综合考虑功率匹配,噪声匹配和驻波匹配,在保证放大器绝对稳定的前提下找到平衡点,使得各指标满足性能要求。

在高温超导滤波器后级的低温低噪声放大器的设计和调试方法

图2 放大器示意图

噪声系数是优先考虑的对象,晶体管的噪声由下式决定:

在高温超导滤波器后级的低温低噪声放大器的设计和调试方法

输出匹配电路为了稳定性的考虑通常要加入损耗元件,其功率匹配和驻波匹配不再一致,设计的主要任务是得到需要的ΓL值的同时改善输出驻波匹配。

2 放大器的研制和低温下调试

根据设计的电路绘制PCB版图,焊接元件,封装等一系列步骤以后,研制出需要的放大器(图3)。在70K超导温度下测量,发现其性能和设计有较大偏差,这一方面是由于实际电路中大量短微带线的影响,各分立元件的离散性,和软件模拟晶体管性能的误差。更重要原因的是晶体管特性在如此低的温度下发生的显著的变化。根据德国波鸿大学Helmut Piel 教授小组对atf54143晶体管的测量,其S参数较常温都呈现往高频偏移的特性[3]。

在高温超导滤波器后级的低温低噪声放大器的设计和调试方法

图3 放大器实物图

由此可见,根据实测结果对电路的部分元件进行调整是必需的。调试的步骤可归纳为低温下测量 ━ 理论计算偏差值 ━ 常温下置换元件 ━ 低温下测量的循环过程,直到获得满意的性能。

放大器的调试主要就是匹配点的调试,借助Smith圆图将使这个过程变得直观方便。以输入驻波为例,根据低温下网络分析仪测得的Γ1值利用史密斯圆图可以反推Γin值,然后计算使Γ1=0的C1*,L1*取值。值得注意的是,放大器两端的引线和SMA接头的长度lin必须加入计算。图4形象地展示了计算的过程。

C1,L1作为贴片元件,其元件值都是分立的,经常出现元件系列中没有需要的元件值的情况,这给调试带来一定的困难。采用可调微带电抗可以很好的解决这个问题。图4中给出了可调微带电容的结构,一个电容后端接了一段开路微带线,根据微带线理论,此支路等效阻抗Z1由(3)式决定:

在高温超导滤波器后级的低温低噪声放大器的设计和调试方法

其中,β由微带线宽高比W/h和介质介电常数决定,通过改变微带线宽W可以改变参数β。于是我们可以通过调节微带线的L与W来微调接入阻抗Z的值。这样的结构相当于一个连续可调的电容C’。增加这样一个可调微带电容结构以后,支路电容值可以通过切割或者粘贴微带线连续可调,给低温调试带来极大的便利。类似的,如果使用一段末端接地的短微带线作为支路,则相当于一个可调电感,同样可以用来调试放大器电路。

在高温超导滤波器后级的低温低噪声放大器的设计和调试方法

图4 Smith圆图和可调微带电容
上述调试方法适用于L波段,对于更高的微波频段,电路分布效应进一步增加,需要更精确的调试方法。最后,经过调试的低温低噪声放大器在70K温度下1.9GHz-2GHz通带内满足增益大于18,输入输出反射损耗小于-20dB,噪声低于0.5dB,满足性能要求并且和超导滤波器匹配良好(图5)。

在高温超导滤波器后级的低温低噪声放大器的设计和调试方法

图5 低温低噪声放大器性能

3 结论

本文介绍了低温下低噪声放大器的设计调试方法。总结了综合考虑功率匹配,驻波匹配和噪声匹配的设计思路。针对低温下放大器性能和常温相比有很大改变的情况,提出了利用Smith圆图和微带可调电容结构的调试方法,并成功研制出工作在高温中频率范围为1.9G-2GHz的低温低噪声放大器,其各项指标均达到要求,该方法对于L波段均适用。

本文作者创新点:
1. 介绍工作在超低温(70K)下的中低噪声放大器的研制方法。
2. 利用Smith圆图和可调微带电容进行低温下调试
3. 并研制出了高性能的1.9GHz-2GHz频段的低温低噪声放大器。

参考文献:
[1] Klauda. M, Kasser. T, Mayer. B.“Superconductors and Cryogenics for Future Communication Systems”IEEE Transactions on Microwave Theory and Techniques, 2000;48(7):1228.
[2] 李宗谦.《微波工程基础》.清华大学出版社,2004:168.
[3] 王昕,王凡,张晓平等. “场效应器件与低噪声放大器”.低温物理学报,2005;27(2):159-164.
[4] 王昌林,李东生,张勇. “一种射频CMOS低噪声放大器的设计”. 微计算机信息,2006.12:117-119

作者简介:
蔡康康 男,1983年11月生于浙江,2004年毕业于清华大学电子工程系并获清华大学学士学位。现为清华大学物理系硕士研究生,研究方向主要为超导系统中低噪声放大器设计。
Email:caikangkang00@mails.tsinghua.edu.cn; 联系电话:13693322200
曹必松(1946- ),男,清华大学物理系博导,研究方向:超导物理的基础研究,超导电子学应用研究。



评论


技术专区

关闭