新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 一款可抑制漏电流的两级单相非隔离型逆变器设计

一款可抑制漏电流的两级单相非隔离型逆变器设计

作者:时间:2013-11-29来源:网络收藏

本文针对传统单相非隔离型全桥光伏并网逆变器的不足,研究并设计了一种新型、高效率且具备抑制能力的两级式单相非隔离型光伏并网逆变器。该逆变器拓扑电路由前级Boost变换器与后级H6结构逆变拓扑级联而成。电流控制环采用比例谐振(PR)控制器来无静差跟踪给定的正弦电流,以提高并网电流质量。最后,通过一台2 kW的单相光伏并网逆变器样机,对理论分析结果进行了实验验证,结果表明该新型单相非隔离型光伏并网逆变器具有控制简单,变换效率高,可靠性高等优点。

本文引用地址:http://www.eepw.com.cn/article/227723.htm

引言

与传统的输出端安装工频隔离变压器的并网逆变器相比,两级式单相非隔离型光伏并网逆变器具有体积小、成本低、效率高等优点,尤其适合应用在近几年各国提出的“屋顶计划”等小功率光伏发电场合。由于传统的单相全桥光伏并网逆变器不具备抑制能力,国内外一些专家学者提出了一系列新的拓扑结构来解决的产生问题,比如H5拓扑、HerIC拓扑、带交流旁路拓扑等。这些拓扑结构均可有效抑制漏电流的产生,但都存在专利保护及转换效率较低等问题。

基于此,研究了一种新型、高效率且具备漏电流抑制能力的两级式单相非隔离型光伏并网逆变器。其前级为Boost电路,后级为新型H6拓扑结构。详细分析了该电路拓扑的工作原理及能有效抑制漏电流产生的原因,提出了相应的控制算法。最后,通过实验验证了该新型逆变器具有优良的性能。

电路结构及工作原理

1、电路结构

图1为提出的新型、高效单相非隔离型光伏并网逆变器的拓扑结构。

一款可抑制漏电流的两级单相非隔离型逆变器设计

图1 两级式单相光伏并网逆变器

其中,Boost电路主要功能为:①升高光板输出的较低电压;②方便实现最大功率点跟踪(MPPT)控制。单相光伏并网逆变器中,Boost电路将光板输出的电压升至约400 V。后级的逆变电路采用具有漏电流抑制能力的H6拓扑结构,与传统的全桥逆变电路相比,增加了两个IGBT和两个二极管。滤波电路则由两个滤波电感及一个滤波电容组成,以滤除交流侧的谐波,保证并网电流的品质。

2、工作原理

图2为新型非隔离型单相光伏并网逆变器的开关管驱动逻辑图。下面结合图1,2来说明该新型逆变器的工作原理。

一款可抑制漏电流的两级单相非隔离型逆变器设计

图2 逆变器驱动逻辑图

工作模式1 电网电压正半周时,V1’一直导通,V2,V5以相同的高频驱动信号导通与关断。V2’,V3,V4一直处于关断状态。V2,V5导通时,输入电源经V2,V1’,滤波电感L2,交流电网,滤波电感L3,V5构成回路向电网供电。此时,桥臂输出电压uAB=Udc,其中,Udc为升压后的直流母线电压。

工作模式2 V2,V5关断时,并网电流经V1’,L2,交流电网,L3,VD2构成续流回路维持并网电流。此时,uAB=0。

工作模式3 电网电压负半周时,V2’一直导通,V3,V4以相同的高频驱动信号导通与关断。V1’,V2,V5一直处于关断状态。当V3,V4导通时,输入电源经过V3,V2’,L3,交流电网,L2,V4构成回路向电网供电。此时,uAB=-Udc。

工作模式4 V3,V4关断时,并网电流经V2’,L3,交流电网,L2,VD3构成续流回路维持并网电流。此时,uAB=0。

下面分析H6拓扑结构的共模电压。如图3所示,电网电压正半周,当V2,V5导通时,A点对直流地电压为输入电压Udc,B点对直流地电压为零。此阶段共模电压压ucm=0.5(Udc+0)=0.5Udc。

一款可抑制漏电流的两级单相非隔离型逆变器设计


上一页 1 2 下一页

关键词: 可抑制 漏电流 逆变器设计
分享给小伙伴们:

评论


相关推荐

技术专区

关闭