新闻中心

EEPW首页 > 嵌入式系统 > 设计应用 > 基于MSP430F149和nRF905的无线血氧指夹的设计与实现

基于MSP430F149和nRF905的无线血氧指夹的设计与实现

作者:时间:2013-04-13来源:网络收藏
引言

  血氧饱和度可以反映病人的呼吸功能,并在一定程度上反映动脉血氧的变化,故在临床监护和家庭监护中都具有重要意义。用常规多参数监护仪监护血氧饱和度时,通常用一个血氧指夹夹在手指端或者脚趾端来采集光电脉搏波信号,并通过一条线缆将信号传到监护设备进行处理和计算。由于线缆的影响,病人往往不便翻身,而且线缆容易脱落,造成测量结果错误,严重危害病人的及时抢救。单模块的血氧饱和度测量设备虽然便于携带,但由于其功耗较高,采用电池供电限制了监护的持续时间:一般此类设备只能将监护信息存储在设备内部,而无法把监护信息及时发送出去,耽误病人的抢救时间。为此,本文提出了一种基于射频芯片和超低功耗单片机的血氧饱和度指夹的设计方法,旨在实现没有线缆,超长时间监护和及时发送监护信息等监护功能。

  1 无创血氧饱和度测量原理

  血氧饱和度(SpO2)是血液中被氧结合的氧合血红蛋白(HbO2)的容量占全部可结合的血红蛋白(Hb)容量的百分比,即血液中血氧的浓度,它是呼吸循环的重要生理参数。而功能性氧饱和度(SaO2)为HbO2浓度与HbO2+Hb浓度之比。因此,监护中常用SaO2来估计SpO2的水平。SaO2的理论计算公式如下:

  其测量方法一般以朗博一比尔定理为基础,利用血液中不同成分的吸光率的不同,采用红光和红外光分别照射组织,并通过测量透射光的强度来计算血氧饱和度的值。其公式如下:

  式中,△I'max为红外光的交流分量的最大值,I'max为红外光的直流分量的最大值,△Imax为红光交流分量的最大值,Imax为红光直流分量的最大值。本系统采用的是660 nm的红光和940 nm的红外光。

  2 系统总体设计

  图1所示是本系统的总体结构框图。本微控制器为主控芯片,用单片机的I/O接口来驱动发光二极管。系统采用迈瑞公司生产的手指端血氧指夹,指夹的输出量为电流信号,可用于反映透射光光强。该电流信号经过电流一电压转换、放大、滤波等信号调理后,可转换为脉搏波信号,最后由内置的12位ADC采样进入单片机进行处理,并通过计算得到血氧饱和度值,将该值打包后由单片机发送到模块,然后通过天线发送出去。

  3 无创血氧指夹的硬件电路

  3.1 信号采集和调理电路

  本系统的信号采集使用迈瑞公司生产的ND78108494手指端血氧指夹,该指夹内部有红光和红外光发光二极管各一个,采用反向对接的方式进行连接;另外有光敏二极管一个,可用以将光强转化为电流强度。

  信号调理电路包括电流一电压转换电路、放大电路、滤波电路和电压范围调整电路共4部分,输出是较为光滑的脉搏波信号。其中电流一电压转换和放大电路如图2所示,图3所示是其滤波和电压调整电路。


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭