新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 两种增强PFC段性能的方法

两种增强PFC段性能的方法

作者:时间:2012-02-13来源:网络收藏
; COLOR: rgb(0,0,0); PADDING-TOP: 0px">  另外一种简单的选择涉及在反馈感测电阻分压器处增加一个电容,如图10所示。在这个图中,我们假定感测网络中上部的电阻分割为两个电阻,而电容Cfb并联连接在其中一个电阻的两端。

  

两种增强PFC段性能的方法

  10 小幅调整反馈网络

  如果控制电路中嵌入了传统的误差放大器,让我们分析电容Cfb的影响。在稳态,Cfb改变了传递函数。通过检测,我们立即注意到它增加了:

  处于下述频率的一个零点:

  

两种增强PFC段性能的方法

(2)

  处于下述频率的一个极点:

  

两种增强PFC段性能的方法

(3)

  控制器集成了传导误差放大器(OTA)时,情况就有点不同。这是因为反馈引脚(误差放大器的反相输入)不再是虚接地(virtual ground)。因此,电阻分压器中下部位置的电阻(RfbL)影响了极点频率的表达式。实际上,采用OTA时:

  

两种增强PFC段性能的方法

(4)

  然而,PFC输出电压的稳压电平通常处于390V范围,而控制器参考电压处在少数几伏的范围。因此,与(RfbU1+RfbU2)相比,RfbL极小;如果RfbU1与RfbU2处在相同范围,或如果RfbU1小于RfbU2,我们就可以考虑:RfbL=RfbU2。事实上,设计人员基于这些考虑因素,能够得出近似Cfb产生的极点频率,即:

  

两种增强PFC段性能的方法

(5)

  最后,两种配置中都获得相同的极点。

  这些条件(RfbU1≈RfbU2)或(RfbU1≤RfbU2)并非限制性条件。相反,满足这些条件是明智之举,因为RfbU1两端的电压及相应的Cfb两端的电压取决于RfbU1值与(RfbU1+RfbU2+RfbL)总电阻值的相对比较关系。这就是为什么它们是现实可行的原因。

  如果RfbU1与RfbU2这两个电阻拥有类似阻值,

  

两种增强PFC段性能的方法

(6)

  如果RfbL=RfbU2:

  

两种增强PFC段性能的方法

(7)

  最后,如果与RfbU2相比RfbU1极小,我们就获得在控制至输出传递函数中抵消(cancel)的极点和零点。这样,增加Cfb就对环路和交越频率没有影响。如果RfbU1与RfbU2处在相同范围,低频增益就略微增加,交越频率就以跟fp与fz的相同比率增加。事实上,特别是在RfbL=RfbU2时,这个增加的电容并不会大幅改变PFC段的动态

  然而,在启动相位期间,这个电容发挥重要作用。当输出电压上升时,Cfb电容也充电。Cfb充电电流增加到反馈电流中,所以稳压电平临时降低。这增加的电流与Cfb电容值成正比,并取决于输出电压的陡峭度,因此,在输出电压快速充电时,这个影响更引人注目。

实际验证

  在应用中已经测试了调整方法,反馈网络如下所示:

  RfbU1≈RfbU2=470kΩ

  RfbL=6.2kΩ

 



关键词: 增强PFC 性能

评论


相关推荐

技术专区

关闭