新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 解析100G传输技术与组网应用

解析100G传输技术与组网应用

作者:时间:2013-09-28来源:网络收藏

随着互联网骨干带宽以每年约50%的速度增长,以及宽带用户(IPTV、视频点播及3G业务等)和带宽饥渴型应用的增加,为业务汇聚与核心网络应用提供E已成为网络运营商、大型互连网业务提供商的迫切需要。40G传输系统已不能满足当前几何式增长的带宽需求,目前部分数据流量繁忙的骨干网上业已呈现出传送带宽紧缺的趋势。成为众望所归的解决方案 ,正逐步规模商用。

  波分系统从2.5G到10G,从10G到40G,一直面临着一系列的物理限制。线路速率再次提升到,这些物理限制因素仍然存在,产生的传输损伤也更为严重。而100G技术的发展,主要是不断地克服这些因素的影响。

  一、100G传输系统面临的挑战

  按照传统波分系统的发展模式, 100G传输系统将面临更高的系统OSNR、更高的色散容限和更强的非线性效应影响等诸多挑战。

  1、要求更高的系统OSNR

  波分传输系统采用光放大器来克服光纤损耗,延长无电中继传输距离,光放大器在对光信号进行功率放大的同时也引入了噪声信号,另一方面,在波特率提升时,光接收机的带宽也需要随之而线性增加,而更宽的接收机带宽将使得更高功率的噪声进入接收机的判决电路,从而会造成误码率的增加,这样就必须要求OSNR容限提升。

  2、要求更高的色散容限

  光信号在光纤中的色散效应来自调制光信号的光谱中的不同频率成分在光纤中的传输速度不同,从而导致承载业务信号的一串光脉冲发生畸变,导致相邻光脉冲之间的码间干扰,从而产生误码。传输光信号的色散容限与光信号的光谱宽度成反比,同时和光信号的时域宽度(脉冲周期)成正比。对于100G信号,由于其光信号的波特率提升,其光谱宽度会相应提升,其时域波形周期也会随之降低,如果100G同样采用传统的OOK/ASK调制方法(二进制振幅键控),则其色散容限将非常小,现有的DCM补偿方式已经完全不能满足要求。对于100G传输,色散容限问题已经成为严重的问题,而传统的光学色散补偿的方法已经不能克服色散容限降低带来的危害,必须采用更新的补偿措施,才能使100G传输成为可能。

  同色度色散(CD)一样,偏振模色散(PMD)也同样限制着高速波分系统的传输能力。偏振模色散(PMD)是指对相同频率的光,只要其偏振模式不同,光纤也会导致其传播速度不同,偏振模色散会导致光纤传输系统的码间干扰(ISI),进而引起误码和系统代价。

  如果100G同样采用传统的OOK/ASK调制方法(二进制振幅键控),其PMD容限不足1ps,无法达到工程预算要求。在100G传输系统中,PMD容限也被认为是一个非常严重的问题,常规的强度调制-直接检测(IM-DD)码型调制及接收方式无法满足系统设计要求,在技术上必须寻找新的解决方案。

  3、光纤非线性效应增强

  光纤非线性效应的强弱与入纤光功率、光信号的光谱宽度、调制码型特性、光纤色散系数以及跨段数目均有关系,光信号的调制速率越高,对光纤非线性效应的忍耐程度越低。而一些特殊的码型调制技术技术,如相位调制、RZ码型调制等,有利于增强传输码型对光纤非线性效应的抵抗能力。100G传输系统,如果要克服由于调制速率提升而带来的更差的非线性忍耐度,就必须从调制技术上寻找新突破。

100G的发展:有效克服长距离传输限制#e#

  二、100G传输新技术的发展,有效克服长距离传输限制


上一页 1 2 3 下一页

关键词: 100G 传输技术 组网应用

评论


相关推荐

技术专区

关闭