新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 基于SCR结构的纳米工艺ESD防护器件研究

基于SCR结构的纳米工艺ESD防护器件研究

作者:时间:2013-09-30来源:网络收藏

摘要:本文主要针对用于ESD防护的进行了研究。通过对其ESD泄放能力和工作机理的研究,为下的IC设计提供ESD保护。本文的研究主要集中在两种常见的SCR上,低触发电压SCR(LVTSCR)与二极管辅助触发SCR(DTSCR)。本文也对以上两种进行了改进,使得其能够在不同工作环境和相应电压域下达到相应的ESD防护等级。本文的测试与分析基于传输线脉冲测试仪(TLP)与TCAD仿真进行,通过对SCR中的正反馈工作机理的阐述,证明了是一种新颖有效的件。

  1 引言静电放电(ESD)现象,一直是困扰集成电路设计与制造的一个难题。在整个集成电路的制造。封装。运输过程中都会产生静电,并对集成电路造成可能的损坏。每年,因ESD导致的电子产品失效所占比例从23%到72%不等。尤其是当集成电路制造进入(《90nm)以后,随着MOS晶体管尺寸的减小,集成电路整体的抗ESD能力愈发下降,而ESD应力本身并不会随着工艺尺寸的减小而减弱。另一方面,工作电压的降低。射频以及功率电路的特殊应用环境。IO端口的尺寸限制都对ESD防护结构提出了更高更加细化的要求。

  件主要分为二极管。MOS管和SCR结构。其中二级管结构简单,寄生效应少,适合射频领域的ESD防护,不会给电路引入过多的寄生参数。而MOS管常采用栅接地的形式(GGNMOS),因其良好的工艺兼容性。各项ESD性能较为折中被广泛的应用于集成电路IO端口的防护之中。相比前两者,硅控整流器(SCR)结构有着最高的ESD效率。在相同的面积之下,SCR结构能够达到二极管或MOS 管结构的数倍ESD防护效果。但因为SCR的I-V曲线呈现一种深回滞的状态,容易导致ESD防护失效和闩锁效应的发生,这使得普通的SCR结构一般不能直接用于集成电路的ESD防护。需要针对不同电路的工作环境和工作电压,对SCR结构进行相应的改进设计。低触发电压SCR(LVTSCR)与二极管辅助触发SCR(DTSCR)就是两种较为成功的SCR改进结构。

  2 LVTSCR结构概述LVTSCR是最早应用于ESD防护的SCR结构之一,其结构特点是SCR中内嵌了一个GGNMOS的结构(图1),带来的好处是触发电压的大幅度降低,基本能够将SCR的触发电压降低到同工艺下的GGNMOS的水平。

  基于SCR结构的纳米工艺ESD防护器件研究

  一个65nm工艺下的典型50um单叉指LVTSCR的TLP测试曲线如图2所示。该LVTSCR 的回滞点在6.8V,维持电压点2.6V.50um单叉指的It2能够达到2.4A.为对于图2中回滞点附近放大部分的曲线观察可以看到早在不到6V 时,LVTSCR就已经呈现开启的状态,有微弱的电流流过LVTSCR.6V左右的开启电压这与同样线宽下的GGNMOS触发电压是非常接近的,这部分电流正是在瞬态ESD条件下流过LVTSCR沟道部分的电流。

  基于SCR结构的纳米工艺ESD防护器件研究

  正是因为有了内嵌的栅结构,使得LVTSCR能够获得与相同工艺下GGNMOS一样的触发,实现低电压开启的目的。另外还是要注意到,尽管采用了内嵌栅实现触发电压的降低,LVTSCR的维持电压依旧是比较低的,如此低的维持电压非常容易发生闩锁效应,为此必须对LVTSCR进行提高维持电压的设计。

  对于SCR结构,最为常用的提高维持电压的方法就是拉伸SCR中两个寄生三极管结构的基区宽度。

  通过降低三极管的电流放大能力来减弱SCR开启后正反馈的效果,最终达到提高维持电压的目的。

  图3(a)中的Dl控制的是LVTSCR的寄生NPN三极管的基区宽度。通过不断增加D1的宽度,可以获得具有高维持电压的LVTSCR结构。图4中实心部分的曲线就是采用了不同Dl的LVTSCR所获得的TLP测试曲线,可以观察到随着D1从 lure增加到4um,LVTSCR的维持电压从最低的3.2V增加到了5V.如此高的维持电压仅与触发电压有着不到2V的工作区间,避免了ESD防护失效和闩锁效应的发生。

  基于SCR结构的纳米工艺ESD防护器件研究

  尽管达到了提高维持电压的目的,图3(a)中的方法毕竟还是缺乏效率。因为只是在横向上增加器件的宽度,所以带来的是ESD器件整体面积的增大,这对于目前寸土寸金的IO口来说,显然是一种不能够接受的方案。为了更好地利用起硅片面积,做到有效提高维持电压的目的,本文


上一页 1 2 下一页

评论


技术专区

关闭