新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 无线通信RF直接变频发送器

无线通信RF直接变频发送器

作者:时间:2013-12-04来源:网络收藏

引言

无线电发射器在经历了若干年的发展后,逐步从简单中频发射架构过渡到正交中频发送器、零中频发送器。而这些架构仍然存在局限性,最新推出的直接能够克服传统发送器的局限性。本文比较了中不同发射架构的特点,直接采用高性能数/模转换器(DAC),比传统技术具有明显优势。直接也具有自身挑战,但为实现真正的软件无线电发射架构铺平了道路。

RF DAC,例如14位2.3Gsps MAX5879,是RF直接变频架构的关键电路。这种DAC能够在1GHz带宽内提供优异的杂散和噪声性能。器件在第二和第三奈奎斯特频带采用创新设计,支持信号发射,能够以高达3GHz的输出频率合成射频信号,测量结果验证了DAC的性能。

传统的射频发送器架构

过去数十年间,一直采用传统的发送器架构实现超外差设计,利用本振(LO)和混频器产生中频(IF)。混频器通常在LO附近产生两个镜频(称为边带),通过滤除其中一个边带获得有用信号。现代无线发射系统,尤其是基站(BTS)发送器大多对基带数字调制信号进行I、Q正交调制。

无线通信RF直接变频发送器

图1. 无线发送器架构。

正交中频发送器

复数基带数字信号在基带有两个通路:I和Q。采用两个信号通路的好处是:使用模拟正交调制器(MOD)合成两个复数IF信号时,其中一个IF边带被消除。而由于I、Q通路的不对称性,不会非常理想地抵消调制器的镜频。这种正交IF架构如图1(B)所示,图中,利用数字正交调制器和LO数控振荡器(NCO)对I、Q基带信号进行内插(系数R),并调制到正交IF载波。然后,双DAC将数字I、Q IF载波转换成模拟信号,送入调制器。为了进一步增大对无用边带的抑制,系统还采用了带通滤波器(BPF)。

零中频发送器

图1(A)所示的零中频(ZIF)发送器中,对基带数字正交信号进行内插,以满足滤波要求;然后将其送入DAC。同样在基带将DAC的正交模拟输出送至模拟正交调制器。由于将整个已调制信号转换到LO频率的RF载波,所以,ZIF架构真正凸显了正交混频的“魅力”。然而,考虑到I、Q通路并非理想通路,例如LO泄漏和不对称性,将会产生反转的信号镜像(位于发射信号范围之内),从而造成信号误码。多载波发送器中,镜频信号可能靠近载波,造成带内杂散辐射。无线发送器往往采用复杂的数字预失真,用来补偿此类瑕疵。

RF直接变频发送器

图1(D)所示RF直接变频发送器中,在数字域采用正交解调器,LO由NCO取代,从而在I、Q通路获得几乎完美的对称性,基本没有LO泄漏。所以数字调制器的输出为数字RF载波,送入超高速DAC。由于DAC输出为离散时间信号,产生与DAC时钟频率(CLK)等距的混叠镜频。由BPF对DAC输出进行滤波,选择射频载波,然后将其送至可变增益放大器(VGA)。

高中频发送器

RF直接变频发送器也可利用这种方法产生较高中频的数字载波,如图1(C)所示。这里,DAC将数字中频转换为模拟中频载波。DAC之后利用带通滤波器的选频特性滤除中频镜频。然后将该需要的中频信号送入混频器,产生IF信号与LO混频的两个边带,经过另外一个带通滤波器滤波,获得需要

模拟信号相关文章:什么是模拟信号


数字通信相关文章:数字通信原理


通信相关文章:通信原理


混频器相关文章:混频器原理

上一页 1 2 3 下一页

评论


相关推荐

技术专区

关闭