新闻中心

EEPW首页 > 设计应用 > 关于连接器接线松脱失效问题研究

关于连接器接线松脱失效问题研究

作者:戴银燕 ,张乐,项永金,黄宇,濮学蕊,王奎(格力电器(合肥)有限公司,安徽合肥,230088)时间:2020-11-23来源:电子产品世界收藏
编者按:连接器广泛应用于航空、航天、国防等军用和民用系统中,是实现电气连接和信号传递的基础元件。电连接器可靠性的高低与系统的安全可靠运行息息相关。因此研究连接器接触可靠性,增加抗拉力,避免接线松脱是目前急需要解决的问题。本文以家电用控制器主板上的连接器为例,阐述连接器接线松脱的解决方案,为后续的连接器可靠性提升奠定基础。


本文引用地址:http://www.eepw.com.cn/article/202011/420546.htm

0前言

连接器,即CONNECTOR。国内亦称作接插件、插头和插座,一般是指电器连接器。即连接两个有源器件的器件,传输电流或信号。它的作用至关重要,即在电路内被阻断处或孤立不通的电路之间,架起沟通的桥梁,从而使电流流通,使电路实现预定的功能。连接器是电子设备中不可缺少的部件,顺着电流流通的通路观察,你总会发现有一个或多个连接器。连接器形式和结构是千变万化的,随着应用对象、频率、功率、应用环境等不同,有各种不同形式的连接器。例如,球场上点灯用的连接器和硬盘驱动器的连接器,以及点燃火箭的连接器是大不相同的。但是无论什么样的连接器,都要保证电流顺畅连续和可靠的流通。 因此增强连接器插头(本文指塑壳连接器)、插座(本文指针座)抗拉强度是首要解决的问题。

image.png

图1 针座塑壳松脱

1    事件背景

实际生产应用中连接器经常会出现不同形式的失效,如针座针芯断、少针、针座塑壳脱出(图1)、针座与线连接器松脱(图2),以上故障中第3、4种失效模式隐患更大,两者接触不良直接导致接触电阻增大,严重还有可能出现打火烧坏。

分析原因线连接器与针座装配完成后,由于连接器线较长,实际生产周转过程受力概率较大,如塑壳与针芯之间保持力较小,就会出现接线松脱问题。

image.png

图2 针座与线连接器松脱

2  可靠性提升方案

2.1针座松脱可靠性提升方案——针芯改为

2.1.1 现有结构分析

经过对塑壳松脱的针座解剖发现其内部针芯为凹槽结构。这种结构针芯整体表面较平整,针座生产过程是塑壳先成型,然后将针芯冲压进塑壳对应孔内,实际针芯凹槽内部无填充塑壳,即凹槽对针座保持力作用很小。在针座受不同方向力即出现松脱现象,测试拉力数据如表1。

表1 针座与针芯保持力测试数据

样品编号

针与塑壳保持力

(拉力方向倾斜45度角)

针与塑壳保持力

(拉力方向竖直引线)

1#
6762
2#
6661
3#
4449
4#
4853
5#
5245
6#
4546

具体操作方法及测试结果:将针座焊接在PCB板上,插上对应线连接器,出现两种情况:

1)竖直拉线连接器60-70N时,线连接器与针座分离,针座上的塑壳与针芯未出现松脱。

2)斜约45°角拉感温包引线40-45N时,感温包端子与针座未分离,针座上的塑壳与针芯出现松脱。

总结:从测试情况看,针座受力拉脱力值在40—60N,针座保持力值较小,该力值实际很难满足生产操作,通过操作很难杜绝,需要从结构上改善。

2.1.2可靠性提升方案

从针芯结构上更改,将凹槽结构更改为,更改前后如图3、图4。

image.png

图3 凹槽结构

image.png

图4

行业内已经有此种结构针座,对比针芯与塑壳保持力发现十字结构针座装板很难拉脱,两种结构各测试10组数据如表2。

表2 针座凹槽、十字结构拉脱力值测试数据对比

凹槽结构

十字结构

样品

拉脱力值(N)

样品

拉脱力值(N)

1#

56

1#

测试值超过120N未拉脱

2#

62

2#

测试值超过120N未拉脱

3#

88

3#

测试值超过120N未拉脱

4#

72

4#

测试值超过120N未拉脱

5#

63

5#

测试值超过120N未拉脱

6#

81

6#

测试值超过120N未拉脱

7#

57

7#

测试值超过120N未拉脱

8#

65

8#

测试值超过120N未拉脱

9#

58

9#

测试值超过120N未拉脱

10#

64

10#

测试值超过120N未拉脱

平均值

66.6


>120

总结:从上表对比数据看,针芯与塑壳之间的保持力,十字结构的针芯保持力明显高于凹槽结构。另外,从更改前后结构看十字针芯圆弧过渡,该结构针芯折弯应力较小,不易折断。

2.1.3分析验证结论

通过实验验证对比分析,针座针芯使用十字结构可以大幅度提升针与塑壳直接的拉脱力值,实际整改效果显著。

针座全部采取十字结构可以有效解决针断不良(凹槽结构针倒R圆角,本身就会产生应力如果倒角出现不良,针很容易受力断,且凹槽结构针座针与塑壳结合力低),十字结构针抗弯折能力高,即使弯折也不易断裂。

image.png

图5 线连接器结构图

2.2 线与针座松脱可靠性提升方案——线连接器保持器增加

2.2.1 现有结构分析

常用塑壳连接器结构如图5,包括塑壳、卡扣、保持器、引线。

卡扣与塑壳之间有一定的间隙(如图6),如使用过程按压到卡扣上部,卡扣尾部即起翘与针座脱落(如图7),出现接线松脱,连接断开(如图8)。

image.png

图6 卡扣与塑壳存在间隙

实际生产过程中通过对线连接器与针座表面打胶固定(如图9),可避免接线松脱,但是这种方式既耗费材料又增加工时,不是最优的方案,需要从物料结构上改善。

image.png

图7 按压卡扣尾部起翘

2.2.2 接线松脱可靠性提升方案

分析接线松脱原因为塑壳卡扣无法固定。从此点出发对结构优化,寻找固定卡扣的方式。通过对塑壳连接器现有结构分析,可以对保持器结构优化,增加凸点,正好顶住塑壳卡扣的上部,限制卡扣的活动范围。但是此凸点不能完全将卡扣固定死,否则无法装配,凸点厚度尺寸在卡扣与塑壳距离的3/4为宜。这样即不影响装配,装配后塑壳也不会脱落。更改前后产品的结构如图10。对比更改前后线连接器与针座之间的保持力如表3。

表3 更改前后线连接器与针座之间的保持力

样品状态
更改前
更改后

拉力值

(单位:N)

44
488180
40508473
48638658
507679
52357985
43418081
46508981
527978
45527883
36338078
平均值
46.5
79.4
最小值
33
58
最大值
63
89

2.2.3 分析验证结论

经过对比结构更改后线连接器与针座的保持力得到明显提升,拉力平均值由46.5N提升到79.4N,同时更改后产品不再需要打胶固定,生产成本和生产工序得到优化。

image.png

图8  连线松脱

3  总结

本文通过对实际售后及生产过程投诉的接线松脱问题,归结为两大类:一是针座针芯与塑壳之间的松脱;二是线连接器与针座之间插装的接线松脱。从解决根本问题出发,对使用环境及产品结构详细分析,通过数据收集—失效分析—整改方案制定—方案实施—效果验证等一系列解决问题的流程,最终对应确认了两个整改方案:一是针座针芯更改为十字结构,二是线连接器保持器更改为二合一结构,既能防止线芯端子脱落又能增强线连接器与塑壳之间的保持力,防止脱落,从而杜绝类似问题的重复发生,提高连接器接触稳定性,更方便快捷的实现信号传输。

image.png

图9 打胶固定

4  连接器接线松脱问题整改的意义

通过对连接器接线松脱问题的解决,阐明了一种分析思路。即首先要了解器件结构及各部件的作用,然后深入挖掘问题产生的根源。从管理思路向技术思路转变,从器件结构优化上提升产品质量。

image.png

图10 保持器更改前后对比图

参考文献:

[1] 余俊. 插拔对接触性能退化规律影响的研究 [D]. 浙江理工大学 2016-12-30

[2] 黄波. 耦合失效机理及可靠性研究 [D]. 电子科技大学 2016-09-14

作者简介:戴银燕,1988年生,女,中级工程师,主要研究方向:电器元器件失效分析。

(本文来自于《电子产品世界》2020年11月期)



评论


技术专区

关闭