新闻中心

EEPW首页 > 电源与新能源 > 设计应用 > 基于AD7606-6的STATCOM信号采集模块设计

基于AD7606-6的STATCOM信号采集模块设计

作者:时间:2018-09-06来源:网络收藏

摘要 作为新一代无功功率补偿装置,具有实时快速准确的补偿特性,其特性的发挥前提是需要快速精确同步的三相电压电流。为此,设计了以为核心的前端电路。在介绍的基本结构和工作原理的基础上,阐述了的特性、引脚功能、并行数据输出时序逻辑。最后,设计了信号调理的与TMS320F2812接口电路,给出了软件设计部分。实验测试表明,该模块达到了对电量参数采集的要求。
关键词 AD7606-6;STATCOM;采集;TMS320F2812

在电网适当地点合理添加无功功率补偿设备对电网进行无功功率补偿是提高电能质量的方法之一。STATCOM作为一种新型无功功率补偿设备,已成为柔性交流输电系统(FACTS)的一个重要组成部分,是未来无功功率补偿设备的发展方向。和其他无功补偿设备如SVC相比,具有响应速度快;不会引起谐振短路;无功功率可以在感性和容性之间连续调节;利用PWM调制技术实现精准的电压调控;可同时对谐波和无功进行补偿。
要实现STATCOM实时陕速准确的补偿特性,必须建立在对电网无功功率、有功功率、谐波等电量参数的实时快速准确测量基础上。基于瞬时无功功率理论的无功功率检测算法,进行的多是瞬时值运算,响应速度快,适用于变化快、冲击大的无功功率和电压闪变的补偿。但瞬时无功功率理论的应用要求同步采样电网某时刻的三相电压电流,针对此情况,文中设计了由AD7606-6模数转换芯片与TMS320F2812组成的数据采集模块。

1 STATCOM结构模型及工作原理
图1所示为以电压源逆变器为核心的STATCOM模型。由以下几部分组成:电压/电流互感器,用于电网三相电压电流、STATCOM交流侧三相电流和电容直流电压检测;直流侧电容,其作用是为设备提供电压支撑;电压源逆变器(VSC),由大功率电力电子开关器件(GTO或IGBT)组成,运用脉宽调制技术(PWM)控制电力电子开关的通断,将电容器上的直流电压逆变成具有一定幅值和频率的交流电压;驱动电路,用于驱动大功率电力电子开关器件;耦合变压器和电抗器,不但可起到将大功率变流装置与电力系统耦合在一起的作用,还可将逆变器输出的电压中的高次谐波滤除,使输出的电压波形接近正弦波。其余的无功计算模块、d-q变换模块、PI调节器模块、PWM输出模块均在主控芯片DSP上完成

式(1)为STATCOM的状态模型,L为连接电感,R,us为逆变器损耗等效电阻为系统电压,uc为逆变器输出电压。

本文引用地址:http://www.eepw.com.cn/article/201809/388580.htm


STATCOM的工作过程是,首先通过检测三相电压和电流,运用瞬时无功功率理论计算电网的无功功率或无功电流,判断电网无功状态,得到所需补偿电流的无功分量,经坐标变换得到逆变器输出的电压参考值Vcα.ref和Vcβ.ref。在欠无功或者无功过剩时,系统调节PWM调制系数,输出的PWM信号通过驱动电路改变电压源逆变器电力电子开关的通断时间,达到改变逆变器输出电压幅值、相位、频率的目的,从而改变电网无功状态,使电网无功功率平衡。
所以,同步检测电网三相电压和电流、STATCOM交流侧三相电流和电容直流电压是系统的核心任务之一。文中将采用AD7606-6模数转换芯片来实现模拟量采集。

2 AD7606-6模数转换芯片
2.1 AD7606-6简介及特性
AD7606-6是ADI公司为简化下一代电力线监控系统设计,新推出16位6通道同步采样模数转换器(ADC),多通道集成方便实现电网的三相电流和电压测量。如图2所示,AD7606-6内置有模拟输入箝位保护、跟踪保持放大器、二阶抗混叠滤波器、16位逐次逼近型ADC、数字滤波器、2.5 V基准电压源、基准电压缓冲以及高速并行和串行接口。采用单电源5 V供电,可处理±5 V和±10 V真双极性输入信号,同时6个通道均能以200 ksample·s-1的吞吐速率采样。输入箝位保护电路可承受高达±16.5 V的电压。无论工作在何种采样频率,AD7606-6的模拟输入阻抗均为1 MΩ。其采用单电源工作方式,具有片内滤波和高输入阻抗,无需驱动运算放大器和外接双极性电源供电。抗混叠滤波器的3 dB截止频率为22 kHz;当采样速率为200 ksample·s-1时,其具有40 dB抗混叠抑制特性。封装采用64脚LQFP形式,具有体积小、重量轻、可工作于-40~+80℃内的恶劣环境、抗干扰性强的特点。


2.2 AD7606-6引脚功能说明
AD7606-6采用64引脚LQFP形式,具有丰富的功能引脚,方便与DSP和微处理器连接。
AD7606-6主要的引脚和功能为:
(1)V1~V6。6个模拟信号输入端,输入信号范围可以是±5 V或±10 V,具体由引脚RANGE决定。
(2)V1GND~V6GND。模拟输入接地引脚,与各自输入引脚对应。
(3)OS[2:0]。过采样模式引脚,用于选择过采样倍率。
(4)DB0-DB15。16位数据并行输出口。其中,DB7/DB8复用为串口输出引脚(DOUTA/DOUTB)。
(6)AGND。模拟地,需并联10μF和100μF的去耦电容;AVCC:模拟电压,范围可从4.5~5.5 V;DGND:数字电路部分参考地;DVCC:数字电压,通常为5 V,数字电压与模拟电压必须保持一致;VDD:电源正电压;VSS:电源负电压。
(7)。片选输入信号引脚,若一起选中,数据由并口一起输出;:读选通信号引脚。
(8)CONVST A/CONVST B。转换开始输入A和B,用于启动模拟输入通道转换。要对6个转换通道进行同时采样,可将两引脚短接,并施加一个启动信号。
(9)BUSY。转换状态信号,该引脚从转换开始到结束保持高电平,转换结束BUSY变为低电平,数据被锁存,可供读取。
(10)RESET。芯片复位信号引脚。
(11)RANGE。模拟输入范围选择引脚,此引脚的极性决定了模拟输入通道的输入范围,当为高电平时,输入范围±10 V,低电平时,输入范围±5 V。
(12)REF SELECT。内外部基准电压选择输入。高电平时使用内部基准电压,低电平则使用外部基准电压。
(13)REFIN/REFOUT。基准电压输入/基准电压输出。
2.3 AD7606-6所有通道同步采样逻辑时序
AD7606-6可对所有模拟输入通道同时采样,时序逻辑如图3所示。要实现所有通道同步采样,只需将CONVEST A和CONVST B引脚短接,使用一个CONVST信号便可启动所有模拟输入通道。AD7606-6内置有片内振荡器用于转换,每个ADC转换时间为tCONV。当施加CONVST上升沿时,BUSY变成高电平,在转换介绍后变为低电平。BUSY下降沿时,主控芯片可以通过给施加低电平,从并行总线DB[15:0]、DOUTA/DOUT B串行数据线读取转换结果,按顺序V1~V6,每施加一个低电平读取一个通道的转换数据。



上一页 1 2 下一页

评论


相关推荐

技术专区

关闭