新闻中心

EEPW首页 > 手机与无线通信 > 设计应用 > 基于稳态的ABSK信号解调模式

基于稳态的ABSK信号解调模式

作者:时间:2017-10-27来源:网络

  0 引言

本文引用地址:http://www.eepw.com.cn/article/201710/368576.htm

  随着无线通信业务的高速发展,空中的无线电频谱越来越拥挤,无线频谱利用率越来越受到重视。经典的二元偏移键控,频谱利用率很低,其中综合性能较好的2-PSK(BPSK),频谱利用率也最多只有1 bps/Hz.虽然通过增加信号空间的星座点数可以提高频谱利用率(如多电平的正交幅度相位调制M-QAM和多相移键控调制M-PSK),但处理起来较为复杂,所需的发射功率也要相应增加。

  与上述调制方式相比,不对称二元偏移键控调制(Asymmetry Binary Shift Keying,ABSK)具有极大优势,其利用微小的波形差异来分别调制“0”、“1”码元,使得调制信号能量集中在载频处,信号带宽大大缩减,符合工程意义上“超窄带”的要求 。

  同时,也正因为“0”、“1”码元的波形差异微小,给ABSK信号的解调带来不小困难。经典的滤波理论和常规的滤波器很难满足要求,美国的H. R. Walker博士发明了所谓“零群时延”晶体带通滤波器,虽然可实现ABSK信号的解调,但由于采用石英晶体实现,不仅可靠性、稳定性、灵活性和一致性都很差,而且难以数字化集成。国内发明专利“用于增强不对称二元调制信号的冲击滤波方法”突破零群时延石英晶体滤波器的技术本质,用无限冲激响应(IIR)数字滤波器技术加以实现,使ABSK高效调制技术走向实用。但其滤波输出响应往往存在较长时段的起始振荡,这造成传输时间以及发射能量的浪费,对于电力线载波通信、猝发通信等要求极高传输效率的小数据包通信和对于能耗尤为在乎的无线传感器网络,不利影响非常突出。本文分析了起始振荡产生的原因,提出了通过预先训练的方法使冲击滤波器直接进入稳定状态的改进方案,无需改变滤波器的设计和结构,消除了初始振荡,仿真结果验证了理论分析的正确性。

  1 不对称的二元相移键控(ABSK)传输系统

  ABSK调制定义如下:

  

  式中:g0 (t) 和g1(t) 分别表示码元“0”和“1”的调制波形;码元周期T = 2π N ωc 持续了N ? 1 个载波周期,“1”码元的调制时间长度τ = 2πK ωc 持续了K 《 N 个载波周期,K 和N 均为整数以保证整周期调制。其中θ 和τ这两个参数构成改变信号带宽、传输码率和解调性能的调制指标。

  根据文献对ABSK 调制的研究分析,ABSK 调制具有如下特点:频带利用率高,式(1)表明,ABSK 调制信号波形除在数据“1”的起始处有短时的相位及幅度的变化外,其余都是连续的正弦波,其能量集中在载频fc处,频谱利用率高;抗干扰能力强;复杂度低,可数字化实现,这是该类调制能实现产业化应用的基础;适应面广,调制参数θ 和调制占空比τ T 的改变,均可控制调制信号的带宽和传输码率,在同样的发射功率下得到不同的传输性能,以适应不同的信道环境。

  基于以上特点,ABSK 信号的应用越来越受到重视。目前常用于ABSK的无限冲激响应(IIR)数字滤波器,由一对共轭零点和至少两对共轭极点构成,信号载频高于零点频率但低于所有极点频率,而零点频率与极点频率的靠近程度,至少要达到信号载频的10-3量级。由此,该滤波器通过其通带中心陡峭的陷波-选频特性,可将ABSK 调制信号在码元“1”处的相位变化信息转换为明显而强烈的寄生调幅冲击,输出信噪比得到显着提升,但在码元“0”处则无相应的波形冲击,如图1 所示。接下来,再对滤波器输出信号进行幅度判决、位同步等常规处理,就可以简单实现ABSK 调制信号的解调。

  

  2 基于稳态的冲击滤波器解调方案

  2.1 起始振荡及其产生原因

  ABSK 调制信号的冲击滤波响应往往存在较长时段的起始振荡,式(1)中取fc = 10 MHz,A = B = 1,θ =π,K ∶N = 2∶40,图2 给出了10 倍采样频率下的冲击滤波器输出响应的包络绝对值,图中横坐标为时间,纵坐标为幅度。图中AD 段为振荡期,在这段时间内,各码元间的冲击幅度起伏极大,较难确定一个合适的门限以供判决。因此,实际通信中为确保可靠性常要丢弃这几百个码元。对于小数据包的猝发通信系统,这种传输时间和能量的浪费尤其不可忽视。

  

  为了消除冲击滤波器的起始振荡,先对起始振荡产生的原因进行分析。数字冲击滤波器的传递函数为:

  

  由于冲击滤波器的直接2型结构比直接1型结构更简单,这里采用直接2型结构来分析,如图3所示。图中的“ z-1 ”为延时单元,在硬件中可用寄存器实现。

  

  此时,冲击滤波输出为:

  

  而实际通信系统必然都是因果的,因此w( - 1),w( - 2),w( - 3),-,w( - 2I) 这些值其实并不存在,习惯上将它们都取为0.随着通信的开始,冲击滤波器便利用实际接收到的ABSK信号进行“自我调整”,以使其状态逐渐“步入正轨”,慢慢接近稳定滤波时所需的值,此时冲击滤波器也逐渐进入稳态。正是这种冲击滤波响应从无到有、滤波器状态从初始零状态调整至稳态的过程,形成了滤波响应起始阶段的振荡期。

  2.2 起始振荡消除方案

  基于以上分析可知:如果将冲击滤波器的初始状态W [0] 预先设置为其到达稳定状态后的值,便可消除冲击滤波响应的起始振荡,而直接进入稳定期。技术方案如下:

  (1)预先发送一串ABSK 调制信号,在经信道由接收机接收并经ADC后送给冲击滤波器;(2)待上述ABSK信号的冲击滤波响应从不断振荡的瞬态彻底进入稳态后(如图2中的“D”点以后),存储记录下此时冲击滤波器的输出状态W [n]。

  (3)在随后的实际通信前,将冲击滤波器的初始状态W [0] 设置为步骤(2)中所得到的W [n],也即其初始状态被“预置”为冲击滤波器的稳态,从而一举消除ABSK信号冲击滤波响应惯有的起始振荡。

  3 仿真

  ABSK调制信号参数设置见2.1节,单零点-4极点的冲击滤波器的传递函数形式为:

  

  详细步骤如下:

  (1)发送1 000个码元周期的ABSK调制信号,经信道后由接收机接收,再经ADC采样量化后,将已数字化的等幅的接收信号送给冲击滤波器,其输出如图2所示,此时由于冲击滤波器的初始状态被“强行”设为0,导致其初始段存在较长的振荡期,图中振荡期持续了约300个码元周期,实际通信时这部分码元将不得不放弃。

  (2)待冲击滤波响应彻底进入稳态后(图2中D点后的输出波形),此时存储记录下冲击滤波器的输出状态W [n],经实测,其数值如下:

  

  (3)在进行实际通信前,将冲击滤波器的初始状态设置为经步骤(1)和步骤(2)预先训练得到的上述W (n)。

  为验证该方法的效果,可再次发送1 000或更多个码元周期的ABSK 调制信号,此时的冲击滤波响应如图4所示,可见此时已确实不存在起始振荡,而是直接进入了起伏十分微小的稳定传输状态。

  

  仿真结果验证了上述消除ABSK 信号冲击滤波响应起始振荡方法的正确性和可行性。

  4 结语

  本文提出了消除ABSK 信号冲击滤波响应起始振荡的方法,改进了ABSK 信号的解调模式,使其无需经历过渡期而直接进入稳态。这种改进使得经过“训练”的冲击滤波器在其后的每次通信前,都处于“时刻准备好”状态,每次通信过程都能直接传输有效数据,无需再为“过渡数据”浪费宝贵的传输时间和能量,特别适用于短数据包的猝发应用场合(如电力线通信、无线传感器网络等)。与现有技术相比,具有以下优点:

  (1)提升了传输效率。由于消除了冲击滤波响应的起始振荡,使得其无需再丢弃初始段的无效位便可进行可靠通信,大大提高了小数据包通信的传输效率。

  (2)提高了系统能效。由于无需再等待图2 中AD段过渡期的结束而直接进入“D”点以后的稳定通信,发射机的开机时间可以大为缩短,特别有利于微型数据采集终端和无线传感器网络节点等的节能降耗。

  (3)通用性好。由于消除冲击滤波响应起始振荡的关键只在于冲击滤波器初始状态的合理设置,因此对于各种不同的ABSK信号、各种不同的采样率以及各种形式的冲击滤波器,本文提出的方法均适用。

  本文对消除ABSK 信号冲击滤波响应起始振荡的方法进行了理论分析和仿真验证,为该方法在工程实践中的应用奠定了基础,接下来的工作将秉承“节能高效”的绿色环保主张,将该方法运用于小数据包猝发通信的实际系统中并加以优化,以进一步提升传输效率,降低通信能耗。




评论

技术专区

关闭