新闻中心

EEPW首页 > 测试测量 > 设计应用 > 漫谈示波器的DDC(数字下变频)技术

漫谈示波器的DDC(数字下变频)技术

作者:时间:2017-02-06来源:网络收藏
1 引言

如今随着电子产品设计的日趋复杂,测试内容也越来越复杂,人们可能不仅需要知道信号的时域特性,也想了解信号的频域特性,或者多域的联合特性也需要进行测量。结果是,很可能在工作测试台上摆满了各种仪器:示波器、频谱仪……等等,工作空间受到挤占,并且更重要的是测试工作变得复杂,各种仪器的复杂连接,仪器间的同步问题需要解决……。因此,对于一般的调试测量,人们希望能有一台多功能的仪器,既能满足时域测试的需求,又能进行频域的分析,甚至时频域信号一起进行相参的联合调试,再甚至对于一些矢量信号也能进行分析。示波器作为最基本的测试测量仪器被广泛的使用,如果能融入这些分析功能,将给工程师们带来极大的便利。目前,各示波器厂家也推出了一些多合一的示波器,技术也各不相同,不是分离的时域和频域通道测量,就是采用软件计算的方式进行分析,因此也面临一些问题。例如在频谱分析时,我们知道RBW(分辨率带宽)与信号的捕获时间成反比关系,如果需要小的RBW(通俗说就是频谱看的更精细),那就需要更长捕获时间,采样率必然会降低,那么对于高频的信号将无法进行分析。相反,如果要对高频信号进行分析,那么RBW将会较大,频率分辨率将会变弱。另外,在矢量信号分析中,同样会受到示波器存储空间和采样率的限制,导致不能对更长时间的信号进行分析。那么对于这些测量当中的问题,如何通过示波器设计来解决呢?本文介绍了R&S公司示波器采用的DDC(数字下变频)技术,很好的解决了以上问题,将多域联合测试发挥的淋漓尽致。

本文引用地址:http://www.eepw.com.cn/article/201702/338121.htm

2 DDC介绍

DDC(Digital Down Converter)即数字下变频,是通过NCO(数控振荡器)产生与射频或中频信号载波相同频率的正弦或余弦信号,与射频或中频信号相乘,最后通过滤波、重采样得到基带信号的过程。

由于数字信号处理的巨大优势,使其得到了广泛的应用。在无线通信系统中,也越来越希望能将A/D(模数)、D/A(数模)转换靠近射频前端,从而能通过数字信号处理来实现通信中的各种功能。然而目前受ADC(模数转换器)和DSP(数字信号处理器)发展水平的限制,直接在很高频的射频端进行AD变换再进行数字信号处理非常困难——数字示波器也一样,如受处理能力限制,如果在射频端对高频信号进行AD采样,需要很高的采样率,捕获时间一旦加长,样本点数就会非常巨大,此时就会发现示波器处理时间变长,反应很缓慢。为了解决ADC与DSP的这个矛盾,采用DDC将信号变频到基带,再使用更低的速率进行重采样,就能减小数据量,提高DSP的效率。

图1 DDC原理框图

图1为DDC原理框图,主要由NCO、混频器、低通滤波器和重采样几个模块组成。射频信号通过高速ADC后变为数字信号In(n):
In(n) = s(n)×cos(wn) (1)

其中,s(n)为信号,cos(wn)为载波,w为载波频率。NCO产生与射频信号频率相同的本振信号f(n):
f(n) = cos(wn) (2)

本振信号与射频信号混频相乘后得到信号m(n):
m(n) = In(n)×f(n) = s(n)×cos(wn)×cos(wn)
= 1/2s(n)[cos(2wn)+1] (3)

将信号m(n)进行低通滤波和重采样后便可得到输出信号Out(n):
Out(n) = 1/2s(n) (4)

由此可见,通过DDC,即保留了真实的有用信号s(n),又通过重采样使得数据量大大减少,提高了后续信号处理的效率。同样,如果在数字示波器中使用了DDC技术,不但能保留射频信号中的有用信号,同时能大大减少数据量,提高示波器的处理速度。

下面我们就来讨论R&S示波器中的DDC应用。

3 R&S示波器硬件实现的DDC

在讨论R&S示波器中的DDC应用之前,我们先来比较一下R&S数字示波器与传统数字示波器结构上的不同。

图2 传统数字示波器结构框图

图2为传统数字示波器的基本结构框图。信号通过模拟通道进入示波器,经过垂直增益放大器和滤波,通过ADC转换成数字信号,由采集存储模块存储下来,再通过软件的方式进行后续的处理,最终显示在示波器屏幕上。传统数字示波器采用软件处理的方式进行数据处理,在硬件上并没有DDC的结构。因此对一些高频信号进行采集或者频谱分析的时候,必须在高采样率下进行,由于示波器本身存储空间有限,因此采集或分析的信号时间长度也相对较短。

图3 R&S数字示波器结构框图

图3为R&S数字示波器的基本结构框图。信号处理流程与传统数字示波器并无太大差别,但使用了较多的硬件结构,包括触发系统、数字处理、DDC等。其它硬件结构的特点与优势本文不作讨论,但可以明显的注意到该结构中使用了硬件实现的DDC。由于使用了硬件的DDC结构,可以对信号先下变频到基带,再以较低的采样率进行重采样,在相同存储空间的情况下,可以采集或分析更长时间的信号。并且由于是硬件的实现方式,速度也会较快。

下面,就DDC在I/Q解调和频谱分析当中的应用进行讨论。

3.1 I/Q解调中的DDC

我们先来看一个真实测试中遇到的问题:待测信号为一个载波频率为300MHz,调制带宽为2MHz的调制信号。那么如果用示波器对该信号进行采集,希望采集时间尽量长,最长可以采集多少秒时间的信号?对于这个问题,我们从信号分析的角度来进行分析。
首先对于这类调制信号,军用的有雷达信号(如chirp信号),民用的有一般通信信号(如QAM信号),这些信号绝大多数为矢量信号。对于这类信号的分析,一定会用到正交解调即I/Q解调。传统数字示波器对于该类信号只能先直接对射频信号进行采集,得到数据存储下来后,再交由专用软件或者用第三方软件编程进行处理(包括I/Q解调和后续处理)。

图4 传统数字示波器对调制信号处理流程

图4显示了传统示波器对于该类调制信号的处理流程。针对上述问题,载波频率为300MHz,调制带宽为2MHz,那么信号的最高频率为301MHz。根据奈奎斯特采样定理,ADC所用的采样率必须为信号最高频率的2倍及以上才能真实的还原波形。我们假设传统示波器ADC使用2倍最高频率即602MSa/s的采样率进行采样(示波器采用刚好2倍关系的采样率一般是不推荐的,一般采用3~5倍的关系才能较为真实的还原波形),假设示波器存储深度为10MSa,那么所能采集信号的最长时间为10MSa / (602MSa/s) ≈ 16.6ms。即使用传统示波器对该类信号进行采集,只能采集10多毫秒时间的信号。如果针对载频更高的信号,如2GHz,采集时间则会更短。

对于上述问题,R&S示波器采用了硬件实现的I/Q解调模块,其中最重要的部分就是DDC。通过使用该模块,可以采集尽可能长时间的调制信号。


上一页 1 2 3 下一页

评论


技术专区

关闭