东菱伺服在机械手上的应用
随着市场竞争的逐渐激烈,用户对所需产品提出了更高的技术和更合理的性能价钱比的要求。伺服系统以其出色的性能完成了对产品的加工过程、加工工艺和综合性能的改造,并在工业领土中得到了非常广泛应用。 机械手在市场上按照驱动类型主要分为两种类型:一种是有气动元件驱动的只是单纯的作低速点对点的运动控制的低端的机械手;而另一种就是要采用高性能伺服作为驱动元件的作高速精确定位的高性能机械手,也是本文讨论的对象。
2、机械手设备组成
机械手设备系统部分有PLC、人机界面、伺服系统等组成。人机界面,采用触摸屏,便于操纵人员设置参数及对整台设备运行状态的监控,负责人机对话交流。PLC做为核心程序的载体,负责脉冲信号的发送控制伺服及各种反馈信号的处理,控制各实行机构的运转与协调。伺服系统,由驱动,伺服电机,码盘反馈信号构成,作为主要运动机构,主要任务是完成定位精度的克制,严厉实行来自PLC的脉冲号令克制,同时,保障在屡次启用负载下亲身运动的安稳性与快速响应性,伺服性能直接反映了整台设备的整机性能与品质。机械手外形图如图一所示:
图一 机械手外形图
机械手的工作原理其实就是靠伺服电机进行驱动, 由于伺服电机能够计算详细的回转圈数,所以可以计算出运动的距离, 机械手上常说的轴, 是以回转部位来计算的, 一个回转部位算一个轴。机械手的控制柜内是伺服模块和运算基板, 用于控制伺服电机的动作和计算相对位置。
伺服驱动器接收PLC脉冲指令驱动电机带动机头作定位运动。定位运行的过程中运行要平稳滑顺,伺服的运行速度将决定机械手的工作效率是否能够满足客户的应用要求,在高速定位的时伺服电机不能出现过冲,震荡以及整定时间过长。
4、东菱伺服参数设置
机械手传动系统采用皮带传动,刚性相对较软,增益高时容易导致系统产生震荡。而工艺要求伺服平稳滑顺的进行高速定位,不能出现过冲甚至震荡。调试过程中,要确保在不引起系统震荡的情况下,尽量调高速度环比例增益。速度环积分增益和位置环比例增益要调小,防止横行轴停止时产生过冲。
评论