新闻中心

EEPW首页 > 测试测量 > 设计应用 > 3V DAC在±10V中的应用

3V DAC在±10V中的应用

作者:时间:2011-07-06来源:网络收藏

摘要:大多数现代系统中的电子器件通常采用3.或更低的电压供电,但有时还需提供±的电压驱动外部负载(工业应用中非常普遍)。尽管有些数/模转换器()能够以±的摆幅驱动负载,但在某些场合仍然使用3.,然后通过放大器将电压放大至±

本文引用地址:http://www.eepw.com.cn/article/194862.htm

概述

使用3.电源供电的现代逻辑系统有时运行在工业环境,可能需要±10V的电压驱动,例如PLC、发送器、电机控制等。满足这一需求的一种方法是选择能够提供±10V电压摆幅的,但更好的方法是使用3.3V的DAC,然后将其输出放大到±10V,理由是:

  • 3.3V DAC比±10V DAC具有更高的逻辑完整性。
  • 3.3V DAC具有更高速率的逻辑接口,可以解脱微控制器部分任务使其处理其它工作。
  • DAC有可能集成在一个大规模、3.3V供电的芯片内(如微控制器),无法提供±10V输出摆幅。
  • 外部负载可能要求一定的输出电流驱动,或驱动容性负载,而±10V DAC无法达到这一需求。

电路框图

电路框图如图1a所示,包含五个主要部分:DAC、基准源、偏置调节、基准源缓冲器与输出缓冲器。

DAC提供相对于基准点压的数字至电压转换,偏置电路对DAC单极性传递函数进行调节,以产生双极性输出,并可校准0V输出点。基准缓冲器能够为基准源提供负载隔离和失调调节。输出缓冲器将偏置电压叠加到信号上,并提供所需的增益,使输出摆幅达到所需要求。另外,输出缓冲器还提供一定的负载驱动能力。

电路说明

图1和图1a所示电路提供了一个将3.3V供电、16位DAC输出通过放大获得±10V输出摆幅的方案。DAC (U2)输出范围:0至2.5V,连接至运算放大器U3的同相输入端。放大器提供(1 + 26.25k/3.75k)或8倍的同相增益。运算放大器的反相输入端接+1.429V电压,该电压由基准和电阻分压网络产生。运算放大器对反相输入的增益为-(26.25k/3.75k)或-7。DAC的0V输出对应于最大负向电压:(0 x 8 ) - (7 x 1.429) = -10V。DAC的满量程输出2.5V对应于最大正向电压:(2.5 x 8) - (7 x 1.429) = +10V。

图1.
图1.

图1a.
图1a.

电路包括以下器件:

  • U1:MAX6133A,2.5V基准源
  • U2:MAX5443,16位、3.3V供电串行DAC
  • U3与U4:OP07A,精密运算放大器,±15V供电
  • U5:MAX5491A,带有ESD保护的精密电阻网络,3:4分压比
  • U6:MAX5491A,带有ESD保护的精密电阻网络,1:7分压比
  • U7:MAX5423,100k、256级、非易失数字电位器

基准源

2.5V基准既是DAC的参考电压,也用于生成+1.429V电压。这两项功能使用了相同的基准源,因此,这两个电压间的任何跟踪误差都会影响零失调电压,因此,共模误差只会影响输出的满量程增益,而增益一般不是非常关键的参数。选择2.5V作为主基准是由于该电压非常通用,并且在3.3V、5V供电时均适用。考虑到器件本身的优异性能,我们选择了小尺寸µMAX®封装MAX6133A。该器件的重要参数包括:输出电压精度(±0.06%)、温度系数(7ppm/°C)和长期稳定性(145ppm/1kHrs)。

数模转换器

工业控制应用中最重要的参数是零点失调误差,本例中MAX5443的单极性输出具有±2 LSB失调误差和±10 LSB的增益误差。这些指标足以满足大多数应用的需求,为了将DAC输出转成双极性信号,通常采用偏置电路将DAC的零点转换为-10V (负向满量程),将中间码转换为0V。这时DAC的中间码误差是零点失调与增益误差之和,而非±2 LSB。有些应用或许不能接受这一指标,所以我们使用了数字电位器,对其零点输出进行再次校准。

运算放大器

运算放大器U4作为基准缓冲器放置在基准分压电阻网络(U5)与运算放大器(U3)增益电阻网络之间。如果系统中使用了一个以上的DAC,这些DAC可以共用该缓冲器输出。运算放大器U3对DAC电压进行放大,并为其提供偏置。该运算放大器的选择与配置由负载需求决定。应考虑以下指标:


上一页 1 2 下一页

关键词: 10V DAC 3V 中的应用

评论


相关推荐

技术专区

关闭