新闻中心

EEPW首页 > 测试测量 > 设计应用 > 机载计算机通用自动测试平台设计

机载计算机通用自动测试平台设计

作者:时间:2013-08-10来源:网络收藏

摘要针对目前设备的通用性设计,提出了一种基于PXI总线的测试平台。文中对PXI测试系统、接口适配器和开关网络进行了说明;介绍了测试软件和故障诊断系统的设计;分析了该系统设计过程中面临的通用性、故障诊断与定位等问题。其设计思想和方案对于通用测试平台的研制具有一定指导意义。
关键词设备;通用平台;PXI;IVI;故障诊断

随着技术的飞速发展,以及军事领域强有力的需求牵引,自动测试设备(AutomaticTestEquipment,ATE)已成为产品测试、使用和维护的必要手段。由于对复杂的测试要求越来越高,具有较强的通用性和扩展性已成为测试设备性能的主要指标。
ATE通用性的实现涉及到接口与适配器的标准化、硬件平台的模块化、测试程序集与仪器资源的无关性设计等许多方面的内容。本文提出了一种以PXI总线为基础,采用虚拟仪器技术、故障诊断技术的设计方法,从而实现机载计算机的通用测试平台。

1 硬件结构设计
通用测试平台以主控计算机为控制核心,由PXI测试设备构成主要测试资源,接口适配器及开关网络组成信号分配和变换单元,辅以测量仪器和供电设备。
主控计算机采用配置先进的PC机。PXI测试设备内部采用PXI标准总线,根据测试的最大需求,选用标准的测试模块进行集成。测量仪器包括:示波器、万用表。供电设备包括:可调电压信号源、115 V供电电源和28 V供电电源。
测试平台与PC机之间采用网卡通讯,PXI测试设备与示波器、万用表和电源之间采用GPIB接口进行通讯。测试平台原理如图1所示。

本文引用地址:http://www.eepw.com.cn/article/192764.htm

a.JPG


1.1 PXI测试系统
PXI测试设备由零槽控制器、模拟量激励/采集模块、离散量输入/输出模块、继电器模块、模拟量电阻模块、电源开关模块、CPIB接口卡组成。采用PXI结构的模块,具有体积小,稳定可靠和便于维护的优点。
在机箱中的各功能模块都是PXI总线的标准模块,通过PXI机箱的背板相互连接。PXI机箱中的测试模块包括:零槽控制器(PXI-PCI-8355)模拟量激励模块(NI6704)、模拟量采集模块(NI6031E)、离散量输入/输出模块(NI6527)、多路继电器模块(NI2503)、通用继电器模块(NI25 65)、模拟量电阻模块(Pickering290)、电源开关模块(Pickering150)和GPIB接口卡(PXI—GPIB)。
1.2 接口适配器及开关网络
接口适配器是测试平台和UUT之间的桥梁,将仪器资源分配给UUT的各个管脚,完成对其施加激励和进行测量的工作。接口适配器TUA(Test Unit Adapter)主要由前面板端口、箱体和接口测试适配器ITA(Interface Test Adapter)构成。
适配器设计采用无源器件,能够防止环境影响,减少测试结果的不确定因素。在测试资源满足测试要求的前提下,适配器以直接连线为主,选择高质量的线缆和连接器,尽量不使用开关器件。因为开关器件会降低资源利用率,而且多余的开关器件和连接线缆,也会影响测试结果的真实性,引起信号频带损失、引入电磁干扰等问题。
开关网络担负着控制信号流向的任务,是实现UUT与系统资源间的信号转接、分配与组合的关键。在ATE中,开关系统一般分为功率开关、矩阵开关、微波开关。功率开关常用于对系统的电源进行切换,矩阵开关和微波开关主要用于信号切换,根据UUT的实际需求,灵活分配测试资源。
本平台采用矩阵开关对接的方式组成开关网络,比如4×16、4×32、4×64型矩阵开关可以把各自的4路信号挂接在总线上,形成任意两路可互达的开关网络结构,测试平台的连接能力大幅增强。测试资源和UUT的任意两路信号可以互达,而测试平台的资源由最大测试资源需求的UUT决定。开关网络把适配器的信号切换功能以测试资源的形式融入到平台中,增强了系统的通用性。
1.3 通用性的实现
对于ATE,信号分配单元、测试资源和主控计算机部分是通用的,不随UUT的变化而改变,这也是测试平台通用性的硬件基础。在测试时,只需根据不同的UUT更换适配器就可实现平台的重构,完成相应测试,满足了机载计算机型号多、信号复杂、输入输出管脚数量多、接口各异的测试需求。
测试平台同时具备良好的扩展机制。通过开关网络,可根据具体的测试需求连接相应的测试资源,例如:可以连接波形发生器或其他具备GPIB接口的测量仪器等,作为扩展模块接入AIE,方便平台的升级、扩展。

2 软件
2.1 软件的通用性设计原则
对基于虚拟仪器技术的通用平台来说,软件是整个测试平台的关键。因此,软件系统构建的好坏直接影响测试平台的整体性能。通用是一个相对概念,通用平台的设计应遵循以下原则:(1)开放式、标准化的软件体系结构。(2)基于IVI技术实现测试仪器的可互换性。(3)TPS(测试程序集)具备可移植性。
可交换虚拟仪器技术规范(IVI)是1998年在VXI即插即用软件技术规范(VPP)的基础上发展而来的一项技术规范,它在扩展VPP标准的同时,增加了仪器的可互换性、仿真和状态缓存等特点。IVI由类驱动器、具体仪器驱动器、引擎和配置文件组成。当仪器更换后,只需修改配置文件中的信息,使测试程序指向新的IVI仪器和仪器驱动器即可,从而实现仪器设备的可互换性。
测试程序开发模式存在两种:一是面向仪器的测试;二是面向信号的测试。面向仪器的测试由测试程序直接控制仪器动作来完成测试;面向信号的测试将对测试资源的需求映射成对信号激励/采集的需求,通过内部服务机制解释、定位和驱动测试仪器完成测试任务。前者的缺点是系统往往不能涵盖所有仪器和新的功能,从而使TPS的可移植性和仪器互换性受到限制。而信号的类型是有限的,理论上可以涵盖所有仪器,这是后者的优势所在。
IVI技术可以从硬件兼容的层面上解决仪器的互操作问题,但不足以解决仪器内部由于工作原理不同而造成测试结果差异。IVI—MSS(Me asurement StimulusSubsystem)规范可以为TPS可移植性的实现建立一定技术基础,其结构如图2所示。通过设计具有复位、建立、变化和捕捉等基本信号操作功能的IVI—MSS信号接口,可以实现测试程序对测量信号的控制和调用。利用IVI信号接口调用虚拟仪器资源完成对UUT的测试,既使测试软件独立于测试平台,又具有良好的可移植性。

b.JPG


上一页 1 2 下一页

评论


相关推荐

技术专区

关闭