新闻中心

EEPW首页 > 模拟技术 > 设计应用 > 一种低压开关电荷泵的设计

一种低压开关电荷泵的设计

作者:时间:2011-09-20来源:网络收藏

摘要:设计了一款应用于亚微米工艺的传输只读存储器的编程高压的单阈值开关。随着亚微米和深亚微米工艺的应用,N+/PWLL结反向击穿电压和栅氧击穿电压都明显降低,用于只读存储器传送编程电压的两阈值开关应用存在着极大的风险。单阈值开关能实现内部高压结点只高于编程一个阈值电压,使开关电荷泵在传送高压时能安全工作。电路在TSMC 0.35μm工艺得到仿真验证。
关键词:单阈值;电荷泵;只读存储器

电荷泵是一种运用电荷在电容器中积累产生高压的电路,它广泛应用于串口通信电路、EEPROM、动态随机存储器等需要高压的领域。电荷泵分大功率电荷泵和小功率电荷泵。根据不同的应用,电荷泵的种类不同,内部直接产生高压的电荷泵有:双极DICKSON电荷泵,MOSDIC-KSON电荷泵,四模式电荷泵设计,电压倍增电荷泵,电压三倍电荷泵。因只读存储器芯片的数据只能进行一次编程,编程后的数据能长时间保存,PROM的基本单元在编程时需要过毫安级别以上的电流,所以只读存储器编程时一般都采用外加编程高压,内部的电荷泵只是起着开关的作用,在编程的时候传递编程高压,并提供大电流通路。现在应用于只读存储器的电荷泵是两阈值电荷泵。
随着半导体工艺的发展,工艺尺寸的不断减小,基本器件的栅氧厚度,最小沟道长度不断减小,对应的栅氧击穿电压,源漏穿通电压也不断减小。只读存储器的编程高压的传递变得很困难,传统的应用于只读存储器中的电荷泵因为内部高压结点峰值要高于编程电压两个阈值电压,导致我们在设计此类电荷泵时,工艺击穿电压的限制成为严重的问题,甚至两阈值损失的电荷泵无法实现。为降低应用于只读存储器电荷泵的内部高压节点电压,同时保证电荷泵传送的编程电压纹波很小,本文设计了一款单阈值电荷泵。

1 两阈值电荷泵工作原理和问题
1.1 两阈值电荷泵的工作原理
电荷泵工作的两个理论基础:电容的两端电压不能突变,电荷共享原理。图1是传统两阈值电荷泵的工作原理分析图。

本文引用地址:http://www.eepw.com.cn/article/187314.htm

b.JPG


外加编程电压为VP,初始时CLEAR端为VDD,因N4管栅极为恒定电源电压VDD,所以初始时结点3的电压V3o=VDD-VTH4,N5管导通,编程结点4接地。电荷泵开始工作,CLK为固定周期的方波信号。
第1个周期,当结点5从0到VDD,因为电容C1两端电压不能突变,另结点2的寄生电容为C5,则结点2从0变化到:
V21=C1×VDD/(C1+CS) (1)
因N2为饱和管接法,结点3的电压钳位到
V31=C1×VDD/(C1+CS)-VTH21 (2)
当结点5从VDD到0时,结点2先被瞬间拉到0,然后又被N1管拉到
C1×VDD/(C1+CS)-VTH21-VTH11 (3)


上一页 1 2 3 下一页

关键词: 低压开关 电荷泵

评论


相关推荐

技术专区

关闭